Девятая ежегодная конференция «Физика плазмы в Солнечной системе» февраль 2014.

Slides:



Advertisements
Similar presentations
SOLAR WIND TURBULENCE; WAVE DISSIPATION AT ELECTRON SCALE WAVELENGTHS S. Peter Gary Space Science Institute Boulder, CO Meeting on Solar Wind Turbulence.
Advertisements

ILWS Conference, October 5, 2009 Extension of Magnetic Clouds in the Inner Heliosphere as observed from Multi- Spacecraft Aline de Lucas Alisson Dal Lago.
Study of Pi2 pulsations observed from MAGDAS chain in Egypt E. Ghamry 1, 2, A. Mahrous 2, M.N. Yasin 3, A. Fathy 3 and K. Yumoto 4 1- National Research.
The Radial Variation of Interplanetary Shocks C.T. Russell, H.R. Lai, L.K. Jian, J.G. Luhmann, A. Wennmacher STEREO SWG Lake Winnepesaukee New Hampshire.
Large amplitude transverse oscillations in a multi-stranded EUV prominence centre for fusion, space and astrophysics J. M. Harris C. Foullon, V. M. Nakariakov,
Coronal Responses to Explosive Events Adria C. Updike Smith College / Harvard-Smithsonian Center for Astrophysics Amy Winebarger and Kathy Reeves, Center.
Plasmas in Space: From the Surface of the Sun to the Orbit of the Earth Steven R. Spangler, University of Iowa Division of Plasma Physics, American Physical.
Turbulent Heating of the Solar Wind at 1 AU Benjamin T. MacBride 1, Miriam A. Forman 2, and Charles W. Smith 1 1 Physics Department, University of New.
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
Long Term Measurements of Solar Wind Fe Charge States: Charge State Distributions Mark Popecki, A. Galvin, L. M. Kistler,H. Kucharek, E. Moebius, K. Simunac,
Strength of Coronal Mass Ejection- driven Shocks Near the Sun and Its Importance in Predicting Solar Energetic Particle Events Chenglong Shen 1, Yuming.
Synoptic maps and applications Yan Li Space Sciences Laboratory University of California, Berkeley, CA HMI team meeting, Jan 27, 2005, Stanford.
A Summary of the Evidence in Favor of the Idea that the Solar Wind is Accelerated by Waves and/or Turbulence S. R. Cranmer 1 & B. D. G. Chandran 2 1 Harvard-Smithsonian.
Институт космических исследований Российской Академии наук О возможности моделирования изменения размеров и формы ионопаузы Венеры в цикле солнечной активности.
Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind Q. M. Lu School of Earth and Space Science, Univ.
On the Cause of Solar Differential Rotation Ling-Hsiao Lyu Institute of Space Science, National Central University 呂凌霄 中央大學太空科學研究所 太陽差動自轉的成因.
Plasma in the Heliosheath John Richardson M.I.T. Collaborators: J. Belcher, J. Kasper, E. Stone, C. Wang.
Incorporating Kinetic Effects into Global Models of the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
Stephanie Moats Mentor: Kathy Reeves August 2009 Harvard-Smithsonian Center for Astrophysics.
Measuring the Magnetic Field in the Sun and the Interstellar Medium Steven R. Spangler… University of Iowa.
Interplanetary Scintillations and the Acceleration of the Solar Wind Steven R. Spangler …. University of Iowa.
The Solar Corona Steven R. Spangler Department of Physics and Astronomy University of Iowa.
Radio Remote Sensing of the Corona and the Solar Wind Steven R. Spangler University of Iowa.
Intermittency beyond the ecliptic plane Anna Wawrzaszek, Marius Echim, Wiesław M. Macek, Roberto Bruno Mamaia, 6-13 September 2015 (1) Space Research Centre.
OBSERVATION OF THE JANUARY 1997 CORONAL MASS EJECTION NEAR THE SUN USING RADIO SOUNDING TECHNIQUE WITH GALILEO SPACECRAFT A.I. Efimov, L.N. Samoznaev,
SPATIAL AND TEMPORAL MONITORING OF THE INTERMITTENT DYNAMICS IN THE TERRESTRIAL FORESHOCK Péter Kovács, Gergely Vadász, András Koppán 1.Geological and.
Anomalous Geomagnetic Variations Possibly Linked with the Taiwan Earthquake Mw= 6.4, 19 December 2009 Takla E. M 1 ; K. Yumoto 1, 2 ; J. Y. Liu 3 ; Y.
Response of the Polar Cusp and the Magnetotail to CIRs Studied by a Multispacecraft Wavelet Analysis Axel Korth 1, Ezequiel Echer 2, Fernando L. Guarnieri.
Faraday Rotation: Unique Measurements of Magnetic Fields in the Outer Corona Justin C. Kasper (UM), Ofer Cohen (SAO), Steven Spangler (Iowa), Gaetan Le.
The Astrophysical Journal, 560:L83-L86, 2001 October 10 © The American Astronomical Society. All rights reserved. Printed in U.S.A. The Origin of.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Simultaneous VLA and UVCS/SOHO Observations of the Solar Corona Steven R. Spangler (University of Iowa), Mari Paz Miralles, Steven R. Cranmer, and John.
N. A. Schwadron U. New Hampshire Solar Wind and Coronal Electron Temperature in the Protracted Solar Minimum, the Cycle 24 Mini Maximum, and Over Centuries.
The Sun as a whole: activity as seen by helioseismology
Effective drift velocity and initiation times of interplanetary type-III radio bursts Dennis K. Haggerty and Edmond C. Roelof The Johns Hopkins University.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Intermittency Analysis and Spatial Dependence of Magnetic Field Disturbances in the Fast Solar Wind Sunny W. Y. Tam 1 and Ya-Hui Yang 2 1 Institute of.
Long Term Measurements of Solar Wind Fe Charge States Mark Popecki, A. Galvin, L. M. Kistler,H. Kucharek, E. Moebius, K. Simunac, P. Bochsler, L. M. Blush,
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
ИЗМЕНЕНИЯ МАГНИТНОЙ СПИРАЛЬНОСТИ В СОЛНЕЧНОМ ЦИКЛЕ Kirill Kuzanyan ИЗМИРАН, Россия Zhang H., Gao Yu Национальные Астрономические Обсерватории АН КНР.
Origins of Solar Minimum CMEs with ICMEs Yan Li 1 B. J. Lynch 1, J. G. Luhmann 1, A. Thernisien 2, A. Vourlidas 2, E. Kilpua 3, L. Jian 4, A. B. Gavin.
SEP Event Onsets: Far Backside Solar Sources and the East-West Hemispheric Asymmetry S. W. Kahler AFRL Space Vehicles Directorate, Kirtland AFB, New Mexico,
Inherent Length Scales and Apparent Frequencies of Periodic Solar Wind Number Density Structures Nicholeen Viall 1, Larry Kepko 2 and Harlan Spence 1 1.
Probing Coronal Mass Ejections with Faraday Rotation Measurements Steven R. Spangler and Catherine A. Whiting University of Iowa.
Probing the Solar Corona with Radioastronomical Observations Steven R. Spangler.
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
The heliospheric magnetic flux density through several solar cycles Géza Erdős (1) and André Balogh (2) (1) MTA Wigner FK RMI, Budapest, Hungary (2) Imperial.
NATIONAL INSTITUTE FOR SPACE RESEARCH – INPE/MCT SOUTHERN REGIONAL SPACE RESEARCH CENTER – CRS/CCR/INPE – MCT FEDERAL UNIVERSITY OF SANTA MARIA - UFSM.
Observations from 1 to 6 AU of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using Ulysses, Voyager and ACE Data Charles W. Smith,
Plasma Wave Excitation Regions in the Earth’s Global Magnetosphere
Faraday Rotation as a Diagnostic of Cosmic Magnetic Fields
GROUND-LEVEL EVENT (GLE)
Chandra Science Highlight
Rick Leske, A. C. Cummings, C. M. S. Cohen, R. A. Mewaldt,
Xuepu Zhao Oct. 19, 2011 The Base of the Heliosphere: The Outer (Inner) Boundary Conditions of Coronal (Heliospheric) models.
ARTEMIS – solar wind/ shocks
Characterizing Interplanetary Shocks at 1 AU
Wang, X.1, Tu, C. Y.1,3, He, J. S.1, Marsch, E.2, Wang, L. H.1
HMI Data Analysis Pipeline
How does the solar atmosphere connect to the inner heliosphere?
Steven R. Spangler University of Iowa
In situ particle detection
About shape of the interplanetary shock front
HMI Data Analysis Pipeline
Introduction to Space Weather
Chandra Science Highlight
Peering through Jupiter’s clouds with radio spectral imaging
B. J. Vasquez, P. Aggarwal, M. R. Argall, L. F. Burlaga, M. Bzowski, B
Correlation Scales of the Turbulent Cascade at 1 AU Charles W
Presentation transcript:

Девятая ежегодная конференция «Физика плазмы в Солнечной системе» февраль 2014

Геометрия эксперимента радиозондирования околосолнечной плазмы с использованием космических аппаратов HELIOS-1 ( ) и HELIOS-2 ( ) Геометрия эксперимента радиозондирования околосолнечной плазмы с использованием космических аппаратов HELIOS-1 ( ) и HELIOS-2 ( ) Станции слежения: Goldstone (DSS 014) Canberra (DSS 043) Madrid (DSS 063) Effelsberg (DSS 069)

Квазипериодические флуктуации фарадеевского вращения плоскости поляризации в области ускорения солнечного ветра. Результат прошлого этапа исследований: Обнаружение квазипериодических осцилляций фарадеевского вращения пятиминутного диапазона. Результат прошлого этапа исследований: Обнаружение квазипериодических осцилляций фарадеевского вращения пятиминутного диапазона. Наземные пункты приема сигналов: Goldstone (США) Canberra (Австралия)

The Astrophysical Journal, 722: 1495–1503, 2010 October 20 doi: / X/722/2/1495 C The American Astronomical Society. All rights reserved. Printed in the U.S.A. CORONAL FARADAY ROTATION FLUCTUATIONS AND A WAVE / TURBULENCE-DRIVEN MODEL OF THE SOLAR WIND Joseph V. Hollweg 1, Steven R. Cranmer 2, and Benjamin D. G. Chandran 3 1 Space Science Center, Morse Hall, University of New Hampshire, Durham, NH 03824, USA; 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; 3 Space Science Center and Department of Physics, Morse Hall, University of New Hampshire, Durham, NH 03824, USA; Received 2010 May 7; accepted 2010 August 21; published 2010 September 30 Hollweg et al. (1982, hereafter “H82”) showed that the observed FRFs agreed well with those predicted from a theoretical model of an Alfven wave-driven fast wind, but that model did not incorporate the aforementioned turbulent dissipation. Efimov et al. (1993) and Andreev et al. (1997a) similarly concluded that the observations are consistent with the presence of coronal magnetic field fluctuations with sufficient amplitudes to drive the solar wind, if the magnetic fluctuations are indeed Alfven waves. In this regard, it is noteworthy that the FRFs tend to have most power at periods of hours, suggesting a connection with the Alfven waves which are routinely observed by spacecraft.

НОВЫЕ ЗАДАЧИ ( ): 1.Выполнить сравнительный анализ материалов, полученных на различных фазах солнечной активности; 2.Определить характерные периоды вариаций фарадеевского вращения плоскости поляризации. НОВЫЕ ЗАДАЧИ ( ): 1.Выполнить сравнительный анализ материалов, полученных на различных фазах солнечной активности; 2.Определить характерные периоды вариаций фарадеевского вращения плоскости поляризации. Эксперименты радиозондирования SW сигналами космических аппаратов в период с 1975 г. по 1985 г. Hel ios-1

Геометрия эксперимента радиозондирования околосолнечной плазмы с использованием космических аппаратов HELIOS-1 ( ) и HELIOS-2 ( ) Геометрия эксперимента радиозондирования околосолнечной плазмы с использованием космических аппаратов HELIOS-1 ( ) и HELIOS-2 ( ) Станции слежения: Goldstone (DSS 014) Canberra (DSS 043) Madrid (DSS 063) Effelsberg (DSS 069) R=( )R s

Faraday rotation (FR) of the HELIOS–2 carrier signal recorded at the Goldstone station on 22 october The apparent solar offset of Helios–2 is given at the top. FARADAY ROTATION (DEGREES) Quasi-periodic fluctuations 17:00-19:30, Δ t=2.5 h (Goldstone)

The deviation of the Faraday rotation from the running average over ± 100 s for recording fragment between 17:00 and 19:30. The averaged period of quasi-periodic variations. FARADAY ROTATION (DEGREES) T = 1.6 ·10 3 s ; ν=0.625 mHz ΔΨ/ ≈ 0.06 Δ t=2.5 h (0.5 Δ t total )

Faraday rotation of the HELIOS-2 carrier signal recorded at the Madrid station on 23 October The average period of quasi-periodic variations T=1.65 hours. HELIOS-2 23 Oct 1979 DOY 296 INGRESS WEST LIMB R/R s Quasi-periodic fluctuations T=1.65 hours Δ t=1.76 h (0.2 Δ t total ) FARADAY ROTATION (DEGREES) UT (HOURS)

FARADAY ROTATION (DEGREES) Faraday rotation measurements with HELIOS–2 on 24 October 1979 at the ground stations Goldstone (red), Canberra (black) and Madrid (blue). Goldstone Canberra Madrid

FARADAY ROTATION (DEGREES) Simultaneous Faraday rotation measurements with HELIOS–2 on 24 October 1979 at the ground stations Goldstone (red) and Madrid (blue). The average period of quasi-periodic variations T ≈ 330 s. R/R s T = 0.33 ·10 3 s ; ν=3 mHz Δ t=1.77 ·10 3 s (0.24 Δ t total ) 10 3 s 0.77·10 3 s

Large scale quasi-periodic ( T 1 ≈ 165 min) FR variations. Small scale quasi-periodic ( T 2 ≈ 220 s) FR fluctuations are superimposed on large scale variations. FARADAY ROTATION (DEGREES) T 1 = 165 min T 2 = 220 s Δ t=15 min INGRESS WEST LIMB

FARADAY ROTATION (DEGREES) T = 220 s Δ t=15 min Quasi-periodic fluctuations of the Faraday rotation of 5-min band

FARADAY ROTATION (DEGREES) Faraday rotation measurements with HELIOS – 2 on 27/28 October 1979 at the ground stations Goldstone (red), Canberra (black) and Madrid (blue).

FARADAY ROTATION (DEGREES) Faraday rotation measurements with HELIOS – 2 on 27 October 1979 at the ground station Canberra

HELIOS-2 27 Oct 1979 DOY 300 EGRESS EAST LIMB FARADAY ROTATION (DEGREES) T 1 = 5 min T 2 = 3 min Quasi-periodic Faraday rotation fluctuations of the 5-min band (T 1 ) and 3-min band (T 2 ) at small heliocentric distances

FARADAY ROTATION (DEGREES) Quasi-periodic variations of the Faraday rotation, observed on 27/28 October 1979 at the ground stations Goldstone (red), Canberra (black) and Madrid (blue).

T2T2 T1T1 T1T1 T2T2 HELIOS-2 27 Oct 1979 DOY 300 EGRESS EAST LIMB FARADAY ROTATION (DEGREES) Superposition of the quasi-periodic of the FR fluctuations of the 20-min band (T 1 ) and 80-min band (T 2 )

Superposition of the quasi-periodic variations of the Faraday rotation with periods T 1 =20 min (these regions are shown by arrows) and T 2 =80 min for all time. SB  D · σ N 2/(p-2) · v T1T1 T1T1

FARADAY ROTATION (DEGREES) Quasi-periodic Faraday rotation variations of 2h-band during solar activity minimum. HELIOS-2 22 May 1976 DOY 143 EGRESS EAST LIMB (Effelsberg)

FARADAY ROTATION (DEGREES) Quasi-periodic Faraday rotation variations of 2h band during the period of the declining solar activity. HELIOS-2 22 DEC 1981 DOY 356 EGRESS EAST LIMB

Quasi-periodic Faraday rotation variations of 5-min band during the period of the declining solar activity. HELIOS-1 7 JAN 1983 DOY 007 INGRESS WEST LIMB T = 230 s Δ t=700 s FARADAY ROTATION (DEGREES)

Дисперсия флуктуаций фарадеевского вращения плоскости поляризации.

Скорость движения неоднородностей магнитного поля (альвеновские волны) V, км/с Теоретическая кривая

4.В 20% случаев регистрировались квазипериодические вариации с периодами, кратными 5 мин. Наибольшую интенсивность имеют вариации двухчасового диапазона. 5.Скорость движения неоднородностей магнитного поля изменяется в пределах от 320 км/с до 560 км/с в интервале гелиоцентрических расстояний ( )R S. 6.Флуктуации фарадеевского вращения обусловлены распространяющимися от Солнца альвеновскими волнами. 7.В рамках перспективных национальных космических проектов (IntergelioZond, Phobos-Grunt) целесообразно запланировать проведение комплексного исследования, включающего одновременное радиозондирование внешней короны Солнца линейно-поляризованными сигналами S-диапазона, сигналами с круговой поляризацией Х-диапазона с регистрацией в разнесенных на большое расстояние наземных пунктах следующих характеристик зондирующих радиосигналов: частоты несущих, амплитуды, фарадеевского вращения, группового запаздывания сигналов за счет плазмы. Регистрация радиосигналов может быть выполнена в наземных пунктах России, американской сети слежения за КА и австралийского пункта Европейского космического агентства.