Channel Allocation Protocols. Dynamic Channel Allocation Parameters Station Model. –N independent stations, each acting as a Poisson Process for the purpose.

Slides:



Advertisements
Similar presentations
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 16 – High Speed LANs.
Advertisements

The ALOHA Protocol “Free for all”: whenever station has a frame to send, it does so. –Station listens for maximum RTT for an ACK. –If no ACK after a specified.
EECC694 - Shaaban #1 lec #5 Spring Data Link In Broadcast Networks: The Media Access Sublayer Broadcast networks with multi-access (or random.
Ethernet – CSMA/CD Review
Fundamentals of Computer Networks ECE 478/578
Lecture 9: Multiple Access Protocols
Communication Networks Lecture 5 NETW 501-L5: NETW 501-L5: Medium Access Control Dr.-Ing. Khaled Shawky Hassan Room: C3-222, ext: 1204,
1 K. Salah Module 4.2: Media Access Control The Media Access Control (MAC) sublayer –Random Access (CSMA), IEEE –Token Passing, IEEE Ch 13-
1 Pertemuan 13 Teknik Akses Jaringan - Random Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
MAC Protocols Media Access Control (who gets the use the channel) zContention-based yALOHA and Slotted ALOHA. yCSMA. yCSMA/CD. TDM and FDM are inefficient.
CS 5253 Workshop 1 MAC Protocol and Traffic Model.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 17 Introduction to Computer Networks.
Copyright © 2003, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Chapter 6 Multiple Radio Access.
Teknik Akses Jaringan Carrier Sense Pertemuan 12 Matakuliah: H0484/Jaringan Komputer Tahun: 2007.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 16 Introduction to Computer Networks.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on materials supplied by Dr. Louise Moser at UCSB and.
Studying Local Area Networks Via Media Access Control (MAC) SubLayer
CS 5253 Workshop 1 MAC Protocol and Traffic Model.
Networks: Local Area Networks1 LANs Studying Local Area Networks Via Media Access Control (MAC) SubLayer.
Computer Networks: Local Area Networks 1 LANs Studying Local Area Networks via the Media Access Control (MAC) SubLayer.
Semester EEE449 Computer Networks The Data Link Layer Part 2: Media Access Control En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex,
Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011 The Medium Access Control Sublayer Chapter.
Medium Access Control Sublayer
Shashank Srivastava Motilal Nehru National Institute Of Technology, Allahabad Medium Access Control.
1 ECE453 – Introduction to Computer Networks Lecture 7 – Multiple Access Control (I)
9/11/2015 5:55 AM1 Ethernet and CSMA/CD CSE 6590 Fall 2010.
Multiple Access Protocols Chapter 6 of Hiroshi Harada Book
Wireless Application Protocol
CIS 725 Media Access Layer. Medium Access Control Sublayer MAC sublayer resides between physical and data link layer Broadcast/multiacess channels N independent.
McGraw-Hill © The McGraw-Hill Companies, Inc., 2004 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
CHAPTER 4: THE MEDIUM ACCESS SUBLAYER 4.1: The Channel Allocation Problem 4.2: Multiple Access Protocols.
LECTURE9 NET301. DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies the absence of other.
LOCAL AREA NETWORKS. CSMA Carrier Sense Multiple Access To minimize the chance of collision and, therefore, increase the performance, the CSMA method.
جلسه دهم شبکه های کامپیوتری به نــــــــــــام خدا.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
جلسه یازدهم شبکه های کامپیوتری به نــــــــــــام خدا.
R ANDOM A CCESS N ETWORKS CSMA F AMILIES 1. References Chapter 9 of the book. Throughput Analysis for Persistent CSMA Systems, HIDEAKI TAKAGI AND LEONARD.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Unit-II Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Medium Access Control Sub Layer
7-1 Introduction to Queueing Theory l Components of a queueing system n probability density function (pdf) of interarrival times n pdf of service times.
Multiple Access.
Chapter 6 Multiple Radio Access
CS3502: Data and Computer Networks Local Area Networks - 1 introduction and early broadcast protocols.
Ch 12. Multiple Access. Multiple Access for Shared Link Dedicated link – Point-to-point connection is sufficient Shared link – Link is not dedicated –
CS3502: Data and Computer Networks Local Area Networks - 1 introduction and early broadcast protocols.
LECTURE9 NET301 11/5/2015Lect 9 NET DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies.
實驗三 媒體存取協定模擬 教師: 助教: 1998/10/19 High Speed Network Lab. Department of Computer Information Science, NCTU.
1 Ethernet CSE 3213 Fall February Introduction Rapid changes in technology designs Broader use of LANs New schemes for high-speed LANs High-speed.
Tel Hai Academic College Department of Computer Science Prof. Reuven Aviv Markov Models for Access Control in Computer Networks Resource: Fayez Gebali,
The Medium Access Control Sublayer
Chapter 4 The Medum Access Sublayer. MA Sublayer Additional Reference –Local and Metropolitan Area Networks, William Stallings, Prentice Hall, 2000, 6th.
Medium Access Control Protocols, Local Area Networks, and Wireless Local Area Networks Lecture Note 10.
UNIT 2 Medium Access sub layer: Medium Access sub layer - Channel Allocations, LAN protocols - ALOHA protocols(PURE AND SLOTTED ALOHA),CSMA/CA,CSMA/CD.
COMPUTER NETWORKS Data-link Layer (The Medium Access Control Sublayer) MAC Sublayer.
Multiple Access By, B. R. Chandavarkar, CSE Dept., NITK, Surathkal Ref: B. A. Forouzan, 5 th Edition.
CS 5253 Workshop 1 MAC Protocol and Traffic Model.
Example DLL Protocols 1. High-Level Data Link Control (HDLC).
Week3 The Medium Access Sublayer
Introduction to Queueing Theory
Medium Access Control Protocols
Module 3 Medium Access Control.
High Speed LANs – Ethernet and Token Ring
Net301 lecture9 11/5/2015 Lect 9 NET301.
Channel Allocation Problem/Multiple Access Protocols Group 3
Channel Allocation Problem/Multiple Access Protocols Group 3
Data Communication Networks
Chapter 6 Multiple Radio Access.
Presentation transcript:

Channel Allocation Protocols

Dynamic Channel Allocation Parameters Station Model. –N independent stations, each acting as a Poisson Process for the purpose protocol analysis Single Channel Assumption. –A single channel is available for all communication. Collision Assumption. –If transmitted frames overlap in time, the resulting signal is garbled. Transmission Discipline: –Continuous time Frames can be transmitted at any time –Slotted time Frames can be transmitted at particular time points Sensing capability: –Station cannot sense the channel before trying to use it. –Stations can tell if the channel is in use before trying to use it

Poisson Process The Poisson Process is a celebrated model used in Queuing Theory for “random arrivals”. Assumptions leading to this model include: –The probability of an arrival during a short time interval Δt is proportional to the length of the interval, and does not depend on the origin of the time interval (memory-less property) –The probability of having multiple arrivals during a short time interval Δt approaches zero.

Poisson Distribution The probability of having k arrivals during a time interval of length t is given by: where λ is the arrival rate. Note that this is a single- parameter model; all we have to know is λ.

Pure ALOHA Protocol While there is a new frame A to send DO 1.Send frame A and wait for ACK 2.If after “some” time ACK is not received (timer times out), wait a random amount of time and go to 1. End

Pure ALOHA In pure ALOHA, frames are transmitted at completely arbitrary times.

Analysis of Pure ALOHA Notation: –T f = frame time (processing, transmission, propagation) –S: Average number of successful transmissions per T f ; that is, the throughput or efficiency. –G: Average number of total frames transmitted per T f –D: Average delay between the time a packet is ready for transmission and the completion of successful transmission. We will make the following assumptions –All frames are of constant length –The channel is noise-free; the errors are only due to collisions. –Frames do not queue at individual stations –The channel acts as a Poisson process.

Analysis of Pure ALOHA… Since S represents the number of “good” transmissions per frame time, and G represents the total number of attempted transmissions per frame time, then we have: S = G  (Probability of good transmission) The vulnerable time for a successful transmission is 2T f So, the probability of good transmission is not to have an “ arrival ” during the vulnerable time.

9 Analysis of Pure ALOHA (4) t0t0 t 0 + tt 0 + 2tt 0 + 3t Collides with the start of the shaded frame Collides with the end of the shaded frame Vulnerable Time Vulnerable period for the shaded frame t

Analysis of Pure ALOHA… Using: And setting t = 2T f and k = 0, we get

11 Analysis of Pure ALOHA… If we differentiate S = Ge -2G with respect to G and set the result to 0 and solve for G, we find that the maximum occurs when G = 0.5, and for that S = 1/2e = So, the maximum throughput is only 18% of capacity. ALOHANET uses a data rate of 9600bps. This means the maximum total throughput (sum of data arriving from all user nodes) is only 0.18  9600 = 1728bps.

Pure ALOHA … Throughput versus offered traffic for ALOHA systems.

Analysis of Pure ALOHA; another approach There are N stations Each station transmits with probability p For a typical node i to have a successful transmission means that there was no prior overlapping transmissions before or after, each with probability (1-p) N-1 Thus the probability of node i having a successful transmission is p (1-p) 2(N-1) Therefore, the probability of a successful transmission is Np (1 ₋ p) 2(N-1) The maximum value for the above term when N is large is 1/2e

Analysis of Pure ALOHA; another approach…

Expected number of transmissions In Pure ALOHA, what is the expected number of transmissions per frame? –Let x be the random variable representing the number of transmissions. Thus, x will take on values 1, 2, 3, …, etc –The probability P k that x takes value k is when we have (k-1) unsuccessful transmissions followed by a successful transmission. –For PURE ALOHA, the probability of a successful transmission is e -2G

Expected number of transmissions Thus E[x] grows exponentially with G, which means that a small increase in the channel load, that is G, can drastically reduce its performance. The ALOHA protocol is an example of an unstable protocol.

17 Slotted ALOHA Channel is organized into uniform slots whose size equals the frame transmission time. Transmission is permitted only to begin at a slot boundary. Here is the procedure: While there is a new frame A to send do 1.Send frame A at a slot boundary and wait for ACK 2.If after “some” time ACK is not received, wait a random amount of time and go to 1. End

Analysis of Slotted ALOHA Note that the vulnerable period is now reduced in half. Using: And setting t = T f and k = 0, we get

Slotted ALOHA Throughput versus offered traffic for ALOHA systems.

Alternate Analysis for Slotted Aloha Use of alternate approach for throughput of slotted aloha is left as exercise

Carrier Sense Multiple Access (CSMA) Additional assumption: –Each station is capable of sensing the medium to determine if another transmission is underway

Non-persistent CSMA While there is a new frame A to send DO 1.Check the medium 2.If the medium is busy, wait some time, and go to 1. 3.(medium idle) Send frame A and wait for ACK 4.If after some time ACK is not received (timer times out), wait a random amount of time and go to 1. End

1-persistent CSMA While there is a new frame A to send do 1.Check the medium 2.If the medium is busy, go to 1. 3.(medium idle) Send frame A and wait for ACK 4.If after some time ACK is not received (timer times out), wait a random amount of time and go to 1. End.

p-persistent CSMA While there is a new frame A to send do 1.Check the medium 2.If the medium is busy, go to 1. 3.(medium idle) With probability p send frame A and the go to 4, and probability (1- p) delay one time slot and go to 1. 4.If after some time ACK is not received (timer times out), wait a random amount of time and go to 1. End.

25 CSMA Summary Non-persistent: Transmit if idle Otherwise, delay, try again Constant or variable Delay Channel busy Ready 1-persistent: Transmit as soon as channel goes idle If collision, back off and try again Time p-persistent: Transmit as soon as channel goes idle with probability p Otherwise, delay one slot, repeat process CSMA persistence and backoff  Nonpersistent  1-persistent  p-persistent

Persistent and Non-persistent CSMA Comparison of throughput versus load for various random access protocols.

CSMA with Collision Detection Stations can sense the medium while transmitting A station aborts its transmission if it senses another transmission is also happening (that is, it detects collision) Question: When can a station be sure that it has seized the channel? –Minimum time to detect collision is the time it takes for a signal to traverse between two farthest apart stations.

CSMA with Collision Detection CSMA/CD can be in one of three states: contention, transmission, or idle.

CSMA/CD A station is said to seize the channel if all the other stations become aware of its transmission. There has to be a lower bound on the length of each frame for the collision detection feature to work out. Ethernet uses CSMA/CD

CSMA/CA Identical to CSMA/CD but used when listening is not possible while transmitting Idle channel reservation is done by sending a short request message asking other nodes to defer transmission If collison is detected then, then random wait is used Wireless IEEE uses CSMA/CA with an RTS/CTS mechanism