IEEE – Wi-Fi Dr. Sanjay P. Ahuja, Ph.D.

Slides:



Advertisements
Similar presentations
IEEE CSMA/CA DCF CSE 6590 Fall /7/20141.
Advertisements

Networks: Wireless LANs1 Wireless Local Area Networks.
Contents IEEE MAC layer operation Basic CSMA/CA operation
1 The Medium Access Control Sublayer Chapter 4. 2 The Medium Access Control Sublayer This chapter deals with broadcast networks and their protocols. In.
Lecture 5: IEEE Wireless LANs (Cont.). Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN a.
– Wireless PHY and MAC Stallings Types of Infrared FHSS (frequency hopping spread spectrum) DSSS (direct sequence.
© Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS591 – Wireless & Network Security.
Studying st lecture ~Overview of IEEE ~ Tadashi YASUMOTO.
14.1 Chapter 14 Wireless LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Network Technology CSE Network Technology CSE3020 Week 9.
1 CSE401n:Computer Networks Lecture 16 Wireless Link & LANs WS: ch-14 KR: 5.7.
CWNA Guide to Wireless LANs, Second Edition Chapter Five IEEE Media Access Control and Network Layer Standards 1.
Wireless Networking So we talked about wired networks. What about wireless?
Networks: Wireless LANs1 Wireless Local Area Networks.
Copyright © 2003, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Chapter 6 Multiple Radio Access.
Wireless Local Area Networks
20 – Collision Avoidance, : Wireless and Mobile Networks6-1.
Networks: Wireless LANs1 Wireless Local Area Networks.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
1 Introduction to Wireless Networks Michalis Faloutsos.
1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may be stationary (non- mobile) or.
5-1 Data Link Layer r What is Data Link Layer? r Wireless Networks m Wi-Fi (Wireless LAN) r Comparison with Ethernet.
Semester EEE449 Computer Networks The Data Link Layer Part 2: Media Access Control En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex,
IEEE Wireless LAN Standard Chapter 14. IEEE 802 Protocol Layers.
6: Wireless and Mobile Networks6-1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may.
Network Security Wireless LAN. Network Security About WLAN  IEEE standard  Use wireless transmission medium such as radio, microwave, infrared.
Chapter 5 outline 5.1 Introduction and services
ECE 4450:427/527 - Computer Networks Spring 2015
Wi-Fi Wireless LANs Dr. Adil Yousif. What is a Wireless LAN  A wireless local area network(LAN) is a flexible data communications system implemented.
Lecture #2 Chapter 14 Wireless LANs.
CWNA Guide to Wireless LANs, Second Edition Chapter Five IEEE Media Access Control and Network Layer Standards.
Wireless LAN Advantages 1. Flexibility 2. Planning 3. Design
MAC layer Taekyoung Kwon. Media access in wireless - start with IEEE In wired link, –Carrier Sense Multiple Access with Collision Detection –send.
IEEE Project started by IEEE for setting standard for LAN. This project started in (1980, February), Name given to project is year and month.
Ethernet. Problem In an Ethernet, suppose there are three stations very close to each other, A, B and C. Suppose at time 0, all of them have a frame to.
The Medium Access Control Sublayer Chapter 4. The Channel Allocation Problem Static Channel Allocation in LANs and MANs Dynamic Channel Allocation in.
Computer and Data Communications Semester Mohd Nazri Mahmud Session 4a-12 March 2012.
CWNA Guide to Wireless LANs, Second Edition
IEEE Wireless LAN Standard
IEEE Wireless LAN Standard. Medium Access Control-CSMA/CA IEEE defines two MAC sublayers Distributed coordination function (DCF) Point coordination.
The Medium Access Control Sublayer Chapter 4. The Channel Allocation Problem Static Channel Allocation in LANs and MANs Dynamic Channel Allocation in.
Chapter 6 Medium Access Control Protocols and Local Area Networks Wireless LAN.
WIRELESS COMMUNICATION Husnain Sherazi Lecture 1.
Wi-Fi. Basic structure: – Stations plus an access point – Stations talk to the access point, then to outside – Access point talks to stations – Stations.
WLAN. Networks: Wireless LANs2 Distribute Coordination Function (DCF) Distributed access protocol Contention-Based Uses CSMA/ CA – Uses both physical.
WLAN.
Chapter 14 Wireless LANs.
MAC Sublayer MAC layer tasks: – Control medium access – Roaming, authentication, power conservation Traffic services – DCF (Distributed Coordination.
Medium Access Control in Wireless networks
Wireless Protocols. 2 Outline MACA 3 ISM: Industry, Science, Medicine unlicensed frequency spectrum: 900Mhz, 2.4Ghz, 5.1Ghz, 5.7Ghz.
802.11: Introduction Reference: “IEEE : moving closer to practical wireless LANs”; Stallings, W.; IT Professional, Volume: 3 Issue: 3, May- June.
MAC Layer Protocols for Wireless Networks. What is MAC? MAC stands for Media Access Control. A MAC layer protocol is the protocol that controls access.
1 Chapter 4 MAC Layer – Wireless LAN Jonathan C.L. Liu, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida.
Distributed-Queue Access for Wireless Ad Hoc Networks Authors: V. Baiamonte, C. Casetti, C.-F. Chiasserini Dipartimento di Elettronica, Politecnico di.
DSSS PHY packet format Synchronization SFD (Start Frame Delimiter)
Copyright © 2003 OPNET Technologies, Inc. Confidential, not for distribution to third parties. Wireless LANs Session
Services Distribution Services (for APs) – Association – mobile stations connect themselves to base stations – Reassociation – a station may change.
Wireless LAN Requirements (1) Same as any LAN – High capacity, short distances, full connectivity, broadcast capability Throughput: – efficient use wireless.
The Medium Access Control Sublayer
IEEE Wireless LAN. Wireless LANs: Characteristics Types –Infrastructure based –Ad-hoc Advantages –Flexible deployment –Minimal wiring difficulties.
Wireless LAN -Architecture Basic Service Set (BSS) Access Point (AP) Distribution System (DS) Extended Service Set (ESS) Portal IEEE has defined the specifications.
March 22, 2004 Prof. Paul Lin 1 CPET The Medium Access Control Sublayer – Wireless LAN Paul I-Hai Lin, Professor Electrical and Computer Engineering.
Wireless LAN By, B. R. Chandavarkar, CSE Dept., NITK, Surathkal
Wireless MAC.
Wireless MAC.
EA C451 (Internetworking Technologies)
Lecture 27 WLAN Part II Dr. Ghalib A. Shah
Chapter 6 Medium Access Control Protocols and Local Area Networks
Protocol Details John Bellardo UCSD.
Chapter 15 Wireless LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Presentation transcript:

IEEE 802.11 – Wi-Fi Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF 1

802.11 Architecture Wireless clients associate to a wired AP (Access Point) Called infrastructure mode; there is also an ad-hoc mode (see next slide) with no AP, but that is rare. Access Point Client To Network

802.11 Architecture Ad-hoc mode

802.11 Protocol Stack OFDM is a form of Frequency-Division Multiplexing (FDM); normally, FDM uses multiple frequency channels to carry the information of different users. OFDM uses multicarrier communications, but only between one pair of users—that is, a single transmitter and a single receiver. Multicarrier communications splits a signal into multiple signals and modulates each of the signals over its own frequency carrier, and then combines multiple frequency carriers through FDM. OFDM uses an approach whereby the carriers are totally independent of (orthogonal to) each other. Note that the total bandwidth consumed with OFDM is the same as with single carrier systems even though multiple carriers are used—because the original signal is split into multiple signals. OFDM is more effective at handling narrowband interference and problems related to multipath fading, simplifying the building of receiver systems. We can illustrate this process with a simple example—one often used in discussions about OFDM. For a "normal" transmission at 1 Mbps, each bit can take 1 microsecond to send. Consider bit 1 and bit 2 sent with a gap of 1 microsecond. If two copies of bit 1 are received at the destination, one of them is the reflected or delayed copy. If the delay is around 1 microsecond, this delayed copy of bit 1 can interfere with bit 2 as it is received at the destination because they arrive at approximately the same time. Now consider an OFDM transmission rate of 100 kbps, that is, the bits are sent "slower" but over multiple frequencies. A multipath delay of around 1 microsecond will not affect bit 2, because bit 2 is now arriving much slower (around 10 microseconds). The delay in bit arrival (1 microsecond in our example) is not a function of the transmission—rather it is due to the various paths taken by the signal. Orthogonal Frequency-Division Multiple Access (OFDMA) superimposes the multiple-access mechanism on OFDM channels, so that multiple users can be supported through subsets of the subcarriers assigned to different users. Note that 802.16-2004 ("Fixed" WiMAX) uses OFDM, whereas 802.16e-2005 ("Mobile" WiMAX) uses OFDMA.

802.11 Physical Layer NICs are compatible with multiple physical layers E.g., 802.11 a/b/g MIMO actually takes advantage of this distortion by sending a single data stream split into multiple parts to be transmitted from multiple antennas (typically 3 in 802.11n) and letting the reflected signals be processed at the receiver (through multiple antennas). The transmission of multiple data streams over different spatial channels, sometimes known as Space Division Multiplexing (SDM), also allows a larger amount of data to be sent over the air. Through advances in the Digital Signal Processing (DSP)-based processing, the receiver can process the signals, cross-correlate them, and reconstitute them accurately despite interference. Also, because of the multiple signals received over multiple paths, link reliability is increased. The 802.11n standard uses three antennas and also supports two radios (for the 2.4- and 5-GHz bands where 802.11n can operate). It can also use 40-MHz channels through channel bonding-that is, two adjacent 20-MHz channels are combined into a single 40-MHz channel, possibly resulting in a data rate of up to 150 Mbps of effective throughput. One concern with 802.11n that is starting to gain attention is the power requirement of 802.11n access points. With radios in both bands and the use of MIMO, 802.11n access points tend to consume more power than the 802.11 a/b/g access points, leading to problems when the access point is powered by Power over Ethernet (PoE) power-sourcing equipment.

802.11 MAC Sub-layer Protocol The 802.11 MAC protocol is different from Ethernet due to the complexity of the wireless environment. In 802.3 if media is silent, station transmits a frame. If no noise burst is received within the first 64 bytes (minimum frame size), then the frame will assuredly be delivered. This situation does not hold true for wireless.

(a) Hidden Station Problem and (b) Exposed Station Problem Since not all stations are within radio range of each other, transmissions going on in one part of a cell may not be received elsewhere in the same cell. To deal with these problems, 802.11 supports two modes of operation: DCF and PCF.

Distributed Coordination Function (DCF) mode Does not use any kind of central control (like Ethernet). When DCF is employed, 802.11 uses CSMA/CA (CSMA with Collision Avoidance) as the MAC protocol. Both physical channel sensing and virtual channel sensing are used. Two modes are supported by CSMA/CA. Mode 1 (CSMA): When a station wants to transmit, it senses the channel. If idle, transmit. It does not sense the channel during transmission; rather it transmits the entire frame, which may be destroyed due to interference at receiver station. If channel is busy, sender waits till channel goes idle and then transmits. If collision occurs, the colliding stations wait a random amount of time, using the Ethernet binary exponential backoff algorithm, and then try again later. In this case, collision is detected if no ACK is received.

Distributed Coordination Function (DCF) Mode 2 (CA): This uses virtual channel sensing as shown in the next slide. Topology: A wants to send to B. C is a station within A’s range and D is a station within B’s range but not within range of A.

DCF: Use of Virtual Channel Sensing Using CSMA/CA This leads to CSMA/CA. C is within A’s range so it receives the RTS. If it does, it realizes that someone is going to send data soon, so it desists from transmitting anything till the exchange is completed. From the information in the RTS frame, it can estimate how long the exchange will take (including final ACK), so it asserts a virtual channel busy for itself called the NAV (Network Allocation Vector). D does not get the RTS, but it does hear the CTS, so it asserts the NAV for itself (NAV signals are not transmitted; they are merely internal reminders to keep quiet for a certain period of time).

DCF: Fragmentation of Frames Wireless networks are noisy and unreliable compared to wired networks. So the probability of a frame making it through successfully decreases with frame length (longer the frame, less likely it will get through without errors). If a frame is too long, it has very little chance of getting through without damage and would lead to retransmission. To solve this frame of noisy channels, 802.11 allows frames to be fragmented, each with its own checksum.

DCF: Fragmentation of Frames The fragments are individually numbered and ACKed using a stop-and-wait protocol. Once the channel has been acquired using RTS and CTS, multiple fragments can be sent in a row. Sequence of fragments is called a fragment burst. Fragmentation increases the throughput by restricting retransmissions to the bad fragments rather than the entire frame. The NAV mechanism keeps other stations quiet only until the next ACK, but another mechanism is used to allow an entire fragment burst to be sent without interference. All this is part of the DCF mode. In this mode, there is no central control and stations compete for air time, just as they do with the Ethernet.

Point Coordination Function (PCF) mode In this mode the base station polls the other stations, asking if they have any frames to send. Since transmission order is completely controlled by the base station, no collisions ever occur. Base station broadcasts a beacon frame periodically. The beacon frame contains system parameters such as hop sequence and dwell time (for FHSS), clock synchronization etc. Base station also invites new stations to sign up for polling service. Once a station has signed up for polling service at a certain rate, it is guaranteed a certain fraction of the bandwidth. Beacon frame sent 10 to 100 times per second.

Interframe Spacing Both DCF and PCF modes can coexist within one cell. This works by carefully defining the interframe time interval. After a frame has been sent, a certain amount of time of dead time is required before any station may send a frame. Four different intervals are defined, each for a different purpose. Beacon frame sent 10 to 100 times per second.

Interframe Spacing Short Interframe Spacing (SIFS): It is used to allow the parties in a single dialog the chance to go first. This includes letting the receiver send a CTS to respond to an RTS, letting the receiver send an ACK for a fragment or full data frame, and letting the sender of a fragment burst transmit the next fragment without having to send an RTS again. There is always exactly one station that is entitled to respond after a SIFS interval. PCF Interframe Spacing (PIFS): If the station entitled to respond after a SIFs interval fails to make use of its chance and a time PIFS (PCF InterFrame Spacing) elapses, the base station may send a beacon frame or poll frame. This mechanism allows a station sending a data frame or fragment sequence to finish its frame without anyone else getting in the way, but gives the base station a chance to grab the channel when the previous sender is done without having to compete with eager users. DCF Interframe Spacing (DIFS): If the base station has nothing to say and a time DIFS (DCF InterFrame Spacing) elapses, any station may attempt to acquire the channel to send a new frame. The usual contention rules apply, and binary exponential backoff may be needed if a collision occurs.

Interframe Spacing Extended Interframe Spacing (EIFS): The last time interval, EIFS (Extended InterFrame Spacing), is used only by a station that has just received a bad or unknown frame to report the bad frame. The idea of giving this event the lowest priority is that since the receiver may have no idea of what is going on, it should wait a substantial time to avoid interfering with an ongoing dialog between two stations.

802.11 Frame Structure The 802.11 standard defines three different classes of frames on the wire: data, control, and management. Each of these has a header with a variety of fields used within the MAC sublayer. The format of the data frame is shown below.

802.11 Frame Structure Frame Control field is 2-bytes long and has 11 subfields: Protocol (2-bits) : version of protocol used Type (2-bits): specifies type of frame whether data, control, or management Subtype (4-bits): e.g. RTS or CTS or ACK To DS and From DS bits: indicate whether the frame is going to or coming from the inter-cell distribution system (e.g., Ethernet). MF bit: more fragments to follow Retry bit: marks a retransmission of a frame sent earlier Power management bit: a station can indicate that it is going into a "sleep" or low-power state to the access point through a status bit in a frame header. The access point then buffers packets for the station instead of forwarding them to the station as soon as they are received. The sleeping station periodically wakes up to receive beacons from the access point. The beacons include information about whether frames are being buffered for the station. The station then sends a request (when polled) to the access point to send the buffered frames. After receiving the frames, the station can go back to sleep.

802.11 Frame Structure More bit: indicates that the sender has additional frames for the receiver Protected bit: specifies that the frame body has been encrypted Order bit: tells the receiver that a sequence of frames with this bit on must be processed strictly in order

802.11 Frame Structure Duration (2-bytes): tells how long the frame and its acknowledgement will occupy the channel and is how other stations manage the NAV mechanism. 3 MAC addresses (6-bytes each): Two addresses are for the source and destination. Third address is for the destination base station and is used for inter-cell traffic. Sequence (2-bytes): allows fragments to be numbered. Of the 16 bits available, 12 identify the frame and 4 identify the fragment. So there can be at most 24 = 16 fragments per frame. Data field (0 to 2312 bytes): contains the payload (IP packet) Checksum (4-bytes) Management frames have a format similar to that of data frames, except without one of the base station addresses, because management frames are restricted to a single cell. Control frames are shorter still, having only one or two addresses, no Data field, and no Sequence field. The key information here is in the Subtype field, usually RTS, CTS, or ACK.

802.11 LAN with Ethernet Connectivity

802.11 Services The 802.11 standard states that each conformant wireless LAN must provide nine services. These services are divided into two categories: five distribution services and four station services. The distribution services relate to managing cell membership and interacting with stations outside the cell. In contrast, the station services relate to activity within a single cell. Five distribution Services are: Association. This service is used by mobile stations to connect themselves to base stations. Typically, it is used just after a station moves within the radio range of the base station. Upon arrival, it announces its identity and capabilities. The capabilities include the data rates supported, need for PCF services (i.e., polling), and power management requirements. The base station may accept or reject the mobile station. If the mobile station is accepted, it must then authenticate itself. Disassociation. Either the station or the base station may disassociate, thus breaking the relationship. A station should use this service before shutting down or leaving, but the base station may also use it before going down for maintenance.

802.11 Services Distribution Services (continued): Reassociation. A station may change its preferred base station using this service. This facility is useful for mobile stations moving from one cell to another. If it is used correctly, no data will be lost as a consequence of the handover. (But 802.11, like Ethernet, is just a best-efforts service.) Distribution. This service determines how to route frames sent to the base station. If the destination is local to the base station, the frames can be sent out directly over the air. Otherwise, they will have to be forwarded over the wired network. Integration. If a frame needs to be sent through a non-802.11 network with a different addressing scheme or frame format, this service handles the translation from the 802.11 format to the format required by the destination network.

802.11 Services The remaining four services are intracell (i.e., relate to actions within a single cell). They are used after association has taken place and are as follows. Authentication. Because wireless communication can easily be sent or received by unauthorized stations, a station must authenticate itself before it is permitted to send data. After a mobile station has been associated by the base station (i.e., accepted into its cell), the base station sends a special challenge frame to it to see if the mobile station knows the secret key (password) that has been assigned to it. It proves its knowledge of the secret key by encrypting the challenge frame and sending it back to the base station. If the result is correct, the mobile is fully enrolled in the cell. Deauthentication. When a previously authenticated station wants to leave the network, it is deauthenticated. After deauthentication, it may no longer use the network. Privacy. For information sent over a wireless LAN to be kept confidential, it must be encrypted. This service manages the encryption and decryption. The encryption algorithm specified is RC4, invented by Ronald Rivest of M.I.T. Data delivery. Finally, data transmission is what it is all about, so 802.11 naturally provides a way to transmit and receive data. Since 802.11 is modeled on Ethernet and transmission over Ethernet is not guaranteed to be 100% reliable, transmission over 802.11 is not guaranteed to be reliable either. Higher layers must deal with detecting and correcting errors.