Qi Wang July 3rd, 2008 389.075 Mobile Communication Seminar.

Slides:



Advertisements
Similar presentations
Multi-carrier CDMA. Outline Introduction System Model Types Applications References.
Advertisements

10-IEEE and WiMax. According to the applications, we define three “Area Networks”: Personal Area Network (PAN), for communications within a few.
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
Institute of Communications Engineering, NCTU 1 Unit 2 Synchronization.
An Introduction of 3GPP Long Term Evolution (LTE) Speaker : Tsung-Yin Lee.
a By Yasir Ateeq. Table of Contents INTRODUCTION TASKS OF TRANSMITTER PACKET FORMAT PREAMBLE SCRAMBLER CONVOLUTIONAL ENCODER PUNCTURER INTERLEAVER.
Channel Estimation for Mobile OFDM
Implement a 2x2 MIMO OFDM-based channel measurement system (no data yet) at 2.4 GHz Perform baseband processing and digital up and down conversion on Nallatech.
Aida BotonjićTieto1 LTE Aida Botonjić. Aida BotonjićTieto2 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High.
Michael Einhaus, ComNets, RWTH Aachen University Dynamic Resource Allocation in OFDMA Systems Michael Einhaus Chair of Communication Networks RWTH Aachen.
1 Data-carrier Aided Frequency Offset Estimation for OFDM Systems.
1 EQ2430 Project Course in Signal Processing and Digital Communications - Spring 2011 On phase noise and it effect in OFDM communication system School.
1 Synchronization for OFDMA System Student: 劉耀鈞 Advisor: Prof. D. W. Lin Time: 2006/3/16.
Doc.: IEEE /0818r1 July 2014 SubmissionYonggang Fang et. al. (ZTE) Synchronization Requirements Date: Slide 1 Authors: NameAffiliationAddress .
Doc.:IEEE /0206r0 Submission January 2015 Shiwen He, Haiming Wang Pilot Design for OFDM PHY for aj(45 GHz) Authors/contributors: Date:
1 CFO Estimation with ICI Cancellation for OFDM Systems 吳宗威.
An Introduction of 3GPP Long Term Evolution (LTE)
Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski LTE Modeling and Dimensioning of Mobile Networks: from GSM to LTE.
1. 2  What is MIMO?  Basic Concepts of MIMO  Forms of MIMO  Concept of Cooperative MIMO  What is a Relay?  Why Relay channels?  Types of Relays.
ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM)
OFDM(A) Competence Development – part II Per Hjalmar Lehne, Frode Bøhagen, Telenor R&I R&I seminar, 23 January 2008, Fornebu, Norway
Orthogonal Frequency Division Multiple Access (OFDMA)
Wireless Communication Technologies 1 Outline Introduction OFDM Basics Performance sensitivity for imperfect circuit Timing and.
Support WiFi and LTE Co-existence
The Study Report of LTE Physical Layer Documents Sheng-Lung Cheng Department of Communication Engineering National Chiao Tung University
National Institute Of Science & Technology OFDM Deepak Ranjan Panda (EI ) [1] Orthogonal Frequency Division multiplexing (OFDM) Technical Seminar.
Performance evaluation of adaptive sub-carrier allocation scheme for OFDMA Thesis presentation16th Jan 2007 Author:Li Xiao Supervisor: Professor Riku Jäntti.
1 PERFORMANCE OF FREQUENCY OFFSET SYNCHRONIZATION IN A SINGLE AND MULTI-ANTENNA IEEE SYSTEM José A. Rivas Cantero M. Julia Fernández-Getino.
NTU Confidential Baseband Transceiver Design for the DVB-Terrestrial Standard Baseband Transceiver Design for the DVB-Terrestrial Standard Advisor : Tzi-Dar.
Scattered MIMO Pilot Allocation using cyclic shift IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-08/068, Scattered.
NTUEE Confidential Toward MIMO MC-CDMA Speaker : Pei-Yun Tsai Advisor : Tzi-Dar Chiueh 2004/10/25.
Presented by: Sohaib Malik.  A radio whose functionality can be changed by changes in only the software  Key feature: ◦ Reprogramability ◦ Reusability.
OFDM-IDMA Uplink Communication
Doc.: IEEE /383 Submission November1998November 1998 Jamshid Khun-Jush, ETSI-BRANSlide 1 BRAN#11 PHY Decisions & Issues to Resolved with
A Concise Introduction to Practical LTE Systems Pho Hale 1.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 5. Synchronization for OFDM.
Doc.: IEEE /0112r0 Zhanji Wu, et. Al. January 2013 Submission Joint Coding and Modulation Diversity for the Next Generation WLAN Date:
1 Orthogonal Frequency- Division Multiplexing (OFDM) Used in DSL, WLAN, DAB, WIMAX, 4G.
© 2014 Airbus Defence and Space – All rights reserved. The reproduction, distribution and utilization of this document as well as the communication of.
PAPR Reduction Method for OFDM Systems without Side Information
Adaptive Usage of Main Resources in MIMO-Cognitive Radio Networks Shalva Kvirkvelia (PHD student) Prof. Teimuraz Kortua Prof. Jemal Beridze.
Changes on Synchronization Channel for Talk-around Direct Communications Document Number: IEEE S802.16n-11/0153 Date Submitted: Source: Jihoon.
NTU Confidential Progress Report of a --- OFDM mode Advisor : Tzi-Dar Chiueh Student : Sang-Jung Yang Date : October 6 th, 2003.
Doc.: IEEE /0205r0 Submission Jan 2015 Shiwen He, Haiming Wang Slide 1 Time Domain Multiplexed Pilots Design for IEEE802.11aj(45 GHz) SC PHY Authors/contributors:
Features of Long Term Evolution (LTE)
S , Postgraduate Course in Radio Communications
Vertical/Horizontal MIMO
Introduction to OFDM and Cyclic prefix
LTE Introduction Tzu-chin Liu 15th March 2012.
A REVIEW: PERFORMANCE ANALYSIS OF MIMO-WiMAX AKANKSHA SHARMA, LAVISH KANSAL PRESENTED BY:- AKANKSHA SHARMA Lovely Professional University.
Technology training (Session 2)
Technology training (Session 6)
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 EPC核心網路系統設計 課程單元 04:LTE 通訊與協定 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學 電腦與通訊工程系)
LTE-A : 4G Wireless Broadband Networks
802.16e PHY Basic concepts By Timor Israeli.
244-6: Higher Generation Wireless Techniques and Networks
Shamir Stein Ackerman Elad Lifshitz Timor Israeli
Linglong Dai and Zhaocheng Wang Tsinghua University, Beijing, China
Synchronization Algorithms for OFDM Systems
Systems with Reduced Complexity
TESTNG TECHNIQUES FOR NB-IOT PHYSICAL LAYER
A Novel Multiple Access System Based on TDS-OFDM
Partial Proposal: 11n Physical Layer
Linglong Dai, Jintao Wang, Zhaocheng Wang and Jun Wang
UWB Receiver Algorithm
Partial Proposal for n: ITRI Preamble Specification
Synchronization Requirements
Joint Coding and Modulation Diversity for ah
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 課程模組: 「LTE-Small Cell 核心網路架構及服務」 單元-A2:LTE-Small Cell的調變技術 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學.
Cellular Networks and Mobile Computing COMS , Spring 2012
Presentation transcript:

Qi Wang July 3rd, Mobile Communication Seminar

Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 2

LTE Physical Layer New Features to Cellular Application Orthogonal Frequency Division Multiplexing (OFDM) Multiple Input Multiple Output (MIMO) OFDMA on downlink SC-FDMA on uplink Frequency domain scheduling 3

LTE Physical Layer 4 slot

Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 5

Carrier Frequency Error in OFDM 6 Received signal: : Carrier Frequency Offset normalized in subcarrier spacing N: FFT size e.g. subcarrier spacing = 15kHz, 10ppm.Osc at 2.5GHz, Fractional Frequency Offset (~0.665) + Integer Frequency Offset (1) + Residual Frequency Offset (~0.002) Carrier Frequency Offset (~1.667)

OFDM Synchronization 7 1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT

Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 8

9 WiMAX Frame Structure 1st Preamble: frame start detection, fractional frequency offset estimation 8 pilots on subcarriers { }: Residual frequency offset tracking 2nd Preamble: Integer frequency offset estimation

1. Frame Detection Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones

1. Frame Detection 11 CP 64 1st Preamble in time domain: Estimated Frame Start

2. Fractional Frequency Offset Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones

Calculate the phase difference: 2. Fractional Frequency Offset 13 1st Preamble in time domain:

1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT 3. Integer Frequency Offset 14 preamble pilot tones

15 3. Integer Frequency Offset Estimated integer frequency offset Received Preamble shifted by 2i Defined Preamble Defined Preamble: Received Preamble:

4. Residual Frequency Offset Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones

17 4. Residual Frequency Offset : received pilot in th OFDM symbol : pre-defined pilot in th OFDM symbol FFT size Cyclic Prefix length average over l OFDM symbols average over k pilot subcarriers

Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 18

LTE Frame Structure 19 Resource Block Resource Element

Primary Synchronization Signals identical in slot 0 and 10 mapped to 72 centre subcarriers Secondary Synchronization Signals Different in slot 0 and 10 Mapped to 62 centre subcarriers Synchronization Signals subcarrier

Reference Signals 21 1 Subframe 1ms 2 Resource Blocks Antenna Port 0 Antenna Port 1

Reference Signals 22 Antenna Port 0 Antenna Port 1 Antenna Port 2

Reference Signals 23 Antenna Port 0 Antenna Port 1 Antenna Port 3 Antenna Port 2 Antenna Port 3

Reference Signals 24 Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 3

2.Fractional Frequency Offset Estimation 1. Frame Start Detection Frequency Offset Correction 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT Primary & Secondary Synchronization Signals Primary Synchronization Signals Primary & Secondary Synchronization Signals Reference Signals Conclusion: Synchronization in LTE DL 25

Reference 3GPP TS V rd Generation Prtnership Project; Technical Specification group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), March 2008 Freescale, ”Overview of the 3GPP Long Term Evolution Physical Layer,” E. Dahlman, S. Parkvall, J. Sköld, P. Beming: “3G Evolution: HSPA and LTE for Mobile Broadband“, Elsevier M. Morelli, C.-C Jay Guo, M. Pun: “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review“, Proc. IEEE, vol. 95, No.7, July T. M. Schmidl, D. C. Cox: “Robust Frequency and Timing Synchronization for OFDM“, IEEE Tran. Comm. Vol. 45, No. 12, Dec Y. Yan, M. Tomisawa, Y. gong, Y. Guan, G. Wang, C. Law, Joint timing and frequency synchronization for IEEE OFDM systems, Mobile WiMAX Symposium, IEEE 26

27

Simulation Result 28 WiMAX SISO throughput with Timing Offset = 89, Carrier Frequency Offset = pi, in the Pedestrian B Channel, 500 frame simulation Perfect synchronized Both Timing Offset and Frequency Offset Corrected Only Timing Offset Corrected Only Frequency Offset Corrected

Simulation Result 29/17 WiMAX SISO throughput, Carrier Frequency Offset = = , Pedestrian B Channel, 500 frames simulation Perfectly Corrected Frame-wise Residual Frequency Offset Estimation Symbol-wise Residual Frequency Offset Estimation Without Residual Frequency Offset Correction Without Carrier Frequency Offset Correction