“Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Pue , México International Jubilee Seminar “Current Problems in Solid State Physics” November 15-19, 2011, Kharkov, Ukraine
Plan 1.Metamateriales fotónicos 2.Metamateriales fonónicos
Photonic crystal Photonic metamaterial
Refraction index
Pendry and Smith, Phys.Today (2004) Photonic metamaterial
Poynting and wave vectors Positive- index or right-handed material. Negative-index or left- handed material.
kpkp SpSp knkn SnSn kװkװ fuente Refracción negativa
Simulation of refraction Pendry and Smith, Phys.Today (2004).
Shelby, Smith and Schultz, Science (2001) Observation of negative refraction
J. Valentine, S. Zhang, T. Zentgraf, et al, Nature, 2008
E. Plum, et al (2009)
Pendry and Smith, Phys.Today (2004). Focusing with ordinary and Veselago lenses
How to “make” the PC uniform? Homogenization or mean-field theory Rapid oscillations of fields are smoothed out: Conventional approach: (Bloch) wavelength >> lattice constant (period)
Theory is very general: Arbitrary dielectric, metallic, magnetic, and chiral inclusions. Arbitrary Bravais lattice. Inclusions in neighboring cells can be isolated or in contact.
Material characterization Tensors of the bianisotropic response Particular cases: magnetodielectric and metallomagnetic photonic crystals with isotropic inclusions
Maxwell’s Equations at micro-level Homogenization of Photonic Crystals V. Cerdán-Ramírez, B. Zenteno-Mateo, M. P. Sampedro, M. A. Palomino-Ovando, B. Flores-Desirena, and F. Pérez-Rodríguez, J. Appl. Phys. 106, (2009).
A photonic crystal being periodic by definition:
Master equation
Macroscopic fields
Effective parameters Homogenization
Cubic lattice of small spheres Maxwell Garnett
Cubic and Orthorhombic PCs
Cubic lattices
Metallic wires f = r/ a = p = c μ 0 a σ z
Pendry´s formula
Magnetic wires
High-permeability metals and alloys
Magnetic properties of various grades of iron
High-permeability magnetic wires z i
Left-handed metamaterial x zy
Magnetometallic PC
300+5i i
Rytov (1956) Effective plasma frequency for metal-dielectric superlattices Effective permittivity Metal-dielectric superlattice B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, Progress in Electromagnetics Research Letters (PIER Lett.) 22, (2011)
Xu et al (2005)
f=0.5/10.5 PIER Lett. (2011) Al-glass
f=0.5/100.5
J.A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F Pérez-Rodríguez, New J. Phys (2011). Material characterization (conductivity) Nonlocal effective conductivity dyadic:
Nonlocal dielectric response Magneto-dielectric response Bianisotropic response Expansion in small wave vectors (ka<< 1):
3D crosses of continous wires
New J. Phys. (2011) 3D crosses of cut wires
Continuous wires Cut wires
3D crosses of asymmetrically-cut wires
“Elastic metamaterials” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Mexico International Jubilee Seminar “Current Problems in Solid State Physics” dedicated to the memory of Associate member of National Academy of Sciences of Ukraine E. A. Kaner and 55 th anniversary of discovery of Azbel-Kaner cyclotron resonance November 16-18, 2011, Kharkov, Ukraine
Plan 1.Phononic crystals 2.Homogenization theory 3.Comparison with other approaches 4.Elastic metamaterials
Phononic crystals (r), C l (r), C t (r) Wave equation:
Photonic crystal Photonic metamaterial Phononic crystal Phononic metamaterial eff, C t,eff C l,eff New J. Phys. 13, (2011) J. Appl. Phys 106, (2009)
Phononic metamaterials Similarity with photonic metamaterials 1. Poynting vector and wave vector are oposite if the mass density is negative 2. The refraction index is real (negative) if the density and elastic (bulk) modulus are both negative In the photonic case:
Phononic metamaterials ¿How can one obtain a negative mass?
Resonant sonic materials Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Science, 2000.
Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, PRL, 2008 Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass
H. Chena, C. T. Chan, APL, 2007 Acoustic cloacking
Homogenization of phononic crystals
Bloch wave:
Master equation :
Equations at macroscopic level
Effective parameters Local response: Nonlocal response: Homogenization
Si/Al 1D phononic crystals Comparison with numerical results: José A. Otero Hernández 1, Reinaldo Rodríguez 2, Julián Bravo 2 1 Instituto de Cibernética, Matemática y Física. (ICIMAF), Cuba 2 Facultad de Matemática y Computación, UH, Cuba.
Si/Al 2D phononic crystals
2D sonic crystal, solid in water (Al in water)
Comparison with: D. Torrent, J. Sánchez-Dehesa, NJP (2008):
Metamaterial response Al/Rubber 1D phononic crystal Transverse modes
Acoustic branch Local Nonlocal Local
First “optical” band Nonlocal Local Nonlocal
¡Gracias!