“Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48,

Slides:



Advertisements
Similar presentations
Metamaterials, Cloaking, and Acoustics
Advertisements

Electrical and Thermal Conductivity
Chapter 1 Electromagnetic Fields
Negative Refractive Index And Metamaterial :Current Scientific Progress and Applications -Shiv Ashish Kumar.
Average Structure Of Quasicrystals José Luis Aragón Vera Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México. Gerardo.
Metamaterials as Effective Medium
Atomic Vibrations in Solids: phonons
Casimir Effect of Proca Fields Quantum Field Theory Under the Influence of External Conditions Teo Lee Peng University of Nottingham Malaysia Campus 18.
Caleb Hughes Hassan Ismail Brett McCutchan
1. 2 The present review covers the scattering of plane electromagnetic waves on spherical objects The results shown here might be extended to any arbitrary.
I.V. Iorsh, I.V. Shadrivov, P.A. Belov, and Yu.S. Kivshar Benasque, , 2013.
Resonances and optical constants of dielectrics: basic light-matter interaction.
1 Electromagnetic waves Hecht, Chapter 2 Monday October 21, 2002.
Photonic Crystals and Negative Refraction Dane Wheeler Jing Zhang.
THz left –handed EM in composite polar dielectrics Plasmonic excitations in nanostructured materials Cristian Kusko and Mihai Kusko IMT-Bucharest, Romania.
1 Modeling and Simulation of Photonic Devices and Circuits I (Passive Devices and Circuits) A course on: Optical wave and wave propagation Material optical.
Anisotropic negative refractive index material (NRM) S. T
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
Waves can be represented by simple harmonic motion.
METAMATERIALS and NEGATIVE REFRACTION Nandita Aggarwal Laboratory of Applied Optics Ecole Polytechnique de Federal Lausanne.
Plasmon applications in PhC Metamaterials and superfocusing effects Daniele Masciarelli 25 July 2007.
RijksUniversiteit Groningen Nanoscience TopMaster 2006 Symposium
Negative refraction and Left-handed behavior in Photonic Crystals:
Artificial Magnetic Resonators and Potential Applications in Nonlinear Field Yongmin Liu Applied Science & Technology Physics 208A Presentation Oct. 18.
Week 10 – More E&M theory, attenuation, color.
+ Lens Effect with Photonic Crystals Student “#3” ECEN 5616 Final Project Presentation
Negative Index of Refraction Betsey Mathew. Mathematically What is n?
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
A Theoretical study on Negative Refractive Index Metamaterials (Review) Madhurrya P. Talukdar Tezpur University.
1 Material Electromagnetic Property Material partition under electric field Material partition under magnetic field Lorentzian model Artificial material.
Lattice Vibrations, Part I
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Introduction to Photonic/Sonic Crystals
Waves and solitons in complex plasma and the MPE - UoL team D. Samsonov The University of Liverpool, Liverpool, UK.
An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials IEEE Antennas and Propagation Magazine,
TOROIDAL RESPONSE IN DIELECTRIC METAMATERIALS
Anomalous Refraction and Photonic Crystal Lenses
Hanjo Lim School of Electrical & Computer Engineering Lecture 2. Basic Theory of PhCs : EM waves in mixed dielectric.
Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation.
The Strange Properties of Left-handed Materials C. M. Soukoulis Ames Lab. and Physics Dept. Iowa State University and Research Center of Crete, FORTH -
1 METAMATERIALS Metamaterials are artificial engineered composite structures that can be designed to exhibit specific electromagnetic properties not observed.
Linear optical properties of dielectrics
Surface Plasmon Resonance
December 7, 2011 Acoustic Cloaking: Manipulating Sound with Artificial Materials Bogdan Popa, Lucian Zigoneanu, Steven Cummer Electrical and Computer Engineering.
Negative refraction in photonic crystals Mike Kaliteevski Durham University.
Time-dependent Simulations of Electromagnetically Induced Transparency with Intense Ultra-short Pulses Wei-Chih Liu 劉威志 Department of Physics National.
Simulation and Understanding of Metamaterials Th. Koschny, J. Zhou, C. M. Soukoulis Ames Laboratory and Department of Physics, Iowa State University. Th.
Phonons Packets of sound found present in the lattice as it vibrates … but the lattice vibration cannot be heard. Unlike static lattice model , which.
Metamaterials Andrew Houck, Dave Kong, Matt Reynolds, Peter Eckley, J. Kong, Ike Chuang, Joe Jacobson.
Thermal Properties of Materials
PHYS 408 Applied Optics (Lecture 4) JAN-APRIL 2016 EDITION JEFF YOUNG AMPEL RM 113.
Saturable absorption and optical limiting
Double-Positive (DPS) Double-Negative (DNG) Epsilon-Negative (ENG)
5. Electromagnetic Optics. 5.1 ELECTROMAGNETIC THEORY OF LIGHT for the 6 components Maxwell Eq. onde Maxwell.
Electromagnetic spatial dispersion in periodic metamaterials Carlo Rizza 1,2, Alessandro Ciattoni 2 1 Department of Science and High Technology, University.
Tunably controlling waveguide behaviors are always desirable for various kinds of applications. In this work, we theoretically propose.
METAMATERIAL BASED ANTENNA FOR WLAN (WiFi) APPLICATIONS
All-Dielectric Metamaterials: A Platform for Strong Light-Matter Interactions Jianfa Zhang* (College of Optoelectronic Science and Engineering, National.
Optical Metamaterials
Acoustic Metamaterials and the Dynamic Mass Density Ping Sheng Department of Physics, HKUST IPAM Workshop on Metamaterials
EE231 Introduction to Optics: Basic EM Andrea Fratalocchi ( slide 1 EE 231 Introduction to Optics Review of basic EM concepts Andrea.
Superconducting Electromagnetic
Review of basic EM concepts
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
PHY 752 Solid State Physics
A course on: Optical wave and wave propagation
Electromagnetic Waves
Review of basic EM concepts
PHYS 408 Applied Optics (Lecture 4)
Presentation transcript:

“Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Pue , México International Jubilee Seminar “Current Problems in Solid State Physics” November 15-19, 2011, Kharkov, Ukraine

Plan 1.Metamateriales fotónicos 2.Metamateriales fonónicos

Photonic crystal Photonic metamaterial

Refraction index

Pendry and Smith, Phys.Today (2004) Photonic metamaterial

Poynting and wave vectors Positive- index or right-handed material. Negative-index or left- handed material.

kpkp SpSp knkn SnSn kװkװ fuente Refracción negativa

Simulation of refraction Pendry and Smith, Phys.Today (2004).

Shelby, Smith and Schultz, Science (2001) Observation of negative refraction

J. Valentine, S. Zhang, T. Zentgraf, et al, Nature, 2008

E. Plum, et al (2009)

Pendry and Smith, Phys.Today (2004). Focusing with ordinary and Veselago lenses

How to “make” the PC uniform? Homogenization or mean-field theory Rapid oscillations of fields are smoothed out: Conventional approach: (Bloch) wavelength >> lattice constant (period)

Theory is very general: Arbitrary dielectric, metallic, magnetic, and chiral inclusions. Arbitrary Bravais lattice. Inclusions in neighboring cells can be isolated or in contact.

Material characterization Tensors of the bianisotropic response Particular cases: magnetodielectric and metallomagnetic photonic crystals with isotropic inclusions

Maxwell’s Equations at micro-level Homogenization of Photonic Crystals V. Cerdán-Ramírez, B. Zenteno-Mateo, M. P. Sampedro, M. A. Palomino-Ovando, B. Flores-Desirena, and F. Pérez-Rodríguez, J. Appl. Phys. 106, (2009).

A photonic crystal being periodic by definition:

Master equation

Macroscopic fields

Effective parameters Homogenization

Cubic lattice of small spheres Maxwell Garnett

Cubic and Orthorhombic PCs

Cubic lattices

Metallic wires f = r/ a = p = c μ 0 a σ z

Pendry´s formula

Magnetic wires

High-permeability metals and alloys

Magnetic properties of various grades of iron

High-permeability magnetic wires z i

Left-handed metamaterial x zy

Magnetometallic PC

300+5i i

Rytov (1956) Effective plasma frequency for metal-dielectric superlattices Effective permittivity Metal-dielectric superlattice B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, Progress in Electromagnetics Research Letters (PIER Lett.) 22, (2011)

Xu et al (2005)

f=0.5/10.5 PIER Lett. (2011) Al-glass

f=0.5/100.5

J.A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F Pérez-Rodríguez, New J. Phys (2011). Material characterization (conductivity) Nonlocal effective conductivity dyadic:

Nonlocal dielectric response Magneto-dielectric response Bianisotropic response Expansion in small wave vectors (ka<< 1):

3D crosses of continous wires

New J. Phys. (2011) 3D crosses of cut wires

Continuous wires Cut wires

3D crosses of asymmetrically-cut wires

“Elastic metamaterials” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Mexico International Jubilee Seminar “Current Problems in Solid State Physics” dedicated to the memory of Associate member of National Academy of Sciences of Ukraine E. A. Kaner and 55 th anniversary of discovery of Azbel-Kaner cyclotron resonance November 16-18, 2011, Kharkov, Ukraine

Plan 1.Phononic crystals 2.Homogenization theory 3.Comparison with other approaches 4.Elastic metamaterials

Phononic crystals  (r), C l (r), C t (r) Wave equation:

Photonic crystal Photonic metamaterial Phononic crystal Phononic metamaterial  eff, C t,eff C l,eff New J. Phys. 13, (2011) J. Appl. Phys 106, (2009)

Phononic metamaterials Similarity with photonic metamaterials 1. Poynting vector and wave vector are oposite if the mass density is negative 2. The refraction index is real (negative) if the density and elastic (bulk) modulus are both negative In the photonic case:

Phononic metamaterials ¿How can one obtain a negative mass?

Resonant sonic materials Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Science, 2000.

Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, PRL, 2008 Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass

H. Chena, C. T. Chan, APL, 2007 Acoustic cloacking

Homogenization of phononic crystals

Bloch wave:

Master equation :

Equations at macroscopic level

Effective parameters Local response: Nonlocal response: Homogenization

Si/Al 1D phononic crystals Comparison with numerical results: José A. Otero Hernández 1, Reinaldo Rodríguez 2, Julián Bravo 2 1 Instituto de Cibernética, Matemática y Física. (ICIMAF), Cuba 2 Facultad de Matemática y Computación, UH, Cuba.

Si/Al 2D phononic crystals

2D sonic crystal, solid in water (Al in water)

Comparison with: D. Torrent, J. Sánchez-Dehesa, NJP (2008):

Metamaterial response Al/Rubber 1D phononic crystal Transverse modes

Acoustic branch Local Nonlocal Local

First “optical” band Nonlocal Local Nonlocal

¡Gracias!