中国科学院大连化学物理研究所 万伯顺 新型手性 SAA 配体的设计合成 与应用研究 第五届全国有机化学学术讨论会报告,郑州大学.

Slides:



Advertisements
Similar presentations
Asymmetric Total Synthesis of Nakadomarin A Li Nan
Advertisements

Lewis Basic Chiral Phosphine Organocatalysis John Feltenberger Hsung Group University of Wisconsin – Madison January 29, 2009.
Asymmetric ketone and imine reductions using ruthenium catalysts Jonathan Hopewell, José E. D. Martins and Martin Wills* 1) M. Wills, D. S. Matharu and.
CDC Reaction Involving α -C-H Bonds of Nitrogen in Amines 李南
Chapter 11. Alcohols from carbonyl compounds (由羰基化合物制醇).
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Yasuhiro Uozumi Angew. Chem. Int. Ed. 2009,
1. 刑其毅主编 基础有机化学 2. 曾昭琼主编 有机化学实验 3. 宁永成主编 有机化合物结构鉴定与有机波 谱学 4. 谢如刚主编 现代有机合成化学 5. 吴毓林主编 现代有机合成化学 阅读书目.
Cyclic Aminal of TsDPEN: Synthesis and Use as Asymmetric Organocatalysts Rina Soni, Silvia Gosiewska, Guy Clarkson, Martin Wills * Department of Chemistry,
Acknowledgements: I would like to thank Martin and the Wills group for their support and encouragement during this project. I would also like to thank.
1 CH402 Asymmetric catalytic reactions Prof M. Wills Think about chiral centres. How would you make these products? Think about how you would make them.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Enantioselective Synthesis of Biphenols from 1,4-Diketones by Traceless Central-to-axial Chirality Exchange Research By: F Guo, LC Konokol, and RJ Thomson;
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
The Career of Chao-Jun Li Guochang B.S. Zhengzhou University 1979 M.S. Chinese Academy of Science 1985 Tak-Hang ChanTak-Hang Chan Ph.D. McGill.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
Iron Catalysed Oxidation Reactions. Moftah Darwish and Martin Wills * * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Conclusion:
Wangqing Kong Zhu’s group meeting 13 th, Aug, 2015 Intramolecular Asymmetric Heck Reaction and Application in Natural Products Synthesis.
Enantioselective Total Synthesis of (+)-Gliocladin C and (+)-Gliocladine C 石枫 Larry E. Overman, Org. Lett., 2007, 9, 339 Larry E. Overman, J.
Synthesis of Optically Active  Amino Alcohols Changyou Yuan Department of Chemistry Michigan State University -A survey of major developments after the.
Cinchona Alkaloids : Efficient Tunable Organocatalyts in Asymmetric Synthesis Antonin Clemenceau
Carbon-Carbon Bond Forming Reactions I. Substitution Reaction II. Addition Reaction.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
1 何 龙 西华师范大学化学化工学院 Brønsted Acid-Catalyzed Asymmetric Three- Component 1,3-Dipolar Cycloaddition Reaction 化学应用与污染控制技术重点实验室年会, 2010 , 12 , 12.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
LSPN Jean-Baptiste Gualtierotti Micro-topic: Desymmetrization (Part 1?) Last Group Metting of the Year.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
Utilization of Ring Closing Metathesis in Alkaloid Synthesis I. Synthetic Studies on the Immunosuppressant FR II. Toward the Total Synthesis of Lundurines.
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Vanadium-Catalyzed Selenide Oxidation with in situ [2,3] Sigmatropic Rearrangement: Scope and Asymmetric Applications Campbell Bourland February 6, 2002.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Catalytic Heterocycle Synthesis Group 万伯顺 杂环合成中的 环加成与环化反应.
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
Cyanomethylation Jian-Zhou Huang  Intrduction  Basic phosphine and NHC  Catalyted by metal Ruthenium Copper Palladium Nickel  Decarboxylative.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Synthesis of novel polycyclic aromatic hydrocarbons by transannular cyclization Tobe Laboratory M1 Yamane Hiroshi.
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Indium in Organic Synthesis Huang-Jianzhou
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Nicolas Gaeng Group seminar – LSPN – 30/04/15. Structures with multiple rings connected through one atom Nomenclature proposed by Adolf Baeyer in 1900.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Enantioselective Total Synthesis of Plectosphaeroic acid B J. Am. Chem. Soc. 2013, 133, 6549−6552 Salman Y. Jabri and Larry E. Overman* Speaker: 古宜加.
Photocatalysis based on TiO2
Catalytic Enantioselective Fluorination
Improved Immobilization of Chiral Bisoxazolines on Silica: Application to Circulating Flow-Type Pack Bed Reactor Su Seong Lee, Jaehong Lim, Jackie Y. Ying.
(Advisor : Prof. Eric N. Jacobsen)
Charette Group Literature Meeting
Visible light photoredox-controlled reactions of N-radicals
Recent Development in Isocyanide-Based
Transition Metal Catalyzed Amide Bond Formation
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
Versatility of BINOL Reagent in Organic Chemistry: Problem Set Answers
Copper Catalyzed C-N Bond Formation Using O-Acyl Hydroxylamine
1. Palladium Catalyzed Organic Transformations
Presentation transcript:

中国科学院大连化学物理研究所 万伯顺 新型手性 SAA 配体的设计合成 与应用研究 第五届全国有机化学学术讨论会报告,郑州大学

(S)-(+)-thalidomide (R)-(+)-thalidomide (镇静剂和止吐剂) 致畸剂 手性与人类健康 :“ 反应停 ” 悲剧

Examples of privileged chiral ligands Diels-Alder Mukaiyama aldol aldehyde allylation hydrogenation alkene isomerization Heck reaction hydrogenation hydrophosphination hydroacylation hydrosilylation Bayer-Villager oxidation Diels-Alder aldehyde allylation ester alcoholysis iodolactonization alkene reduction imine reduction Ziegler-Natta polymerization Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691

epoxidation epoxide ring-opening Diels-Alder imine cyanation conjugate addition Diels-Alder Mukaiyama aldol conjugate addition cyclopropanation aziridination dihydroxylation acylation heterogeneous hydrogenation phase transfer catalysis Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691 Examples of privileged chiral ligands

Thinking……  Catalysts: chiral ligands a.Cost b.Availability “Readily available catalysts for simplifying asymmetric reactions” Our consideration

Idea for development of chiral ligands Development of easily available and readily tunable ligands using multicenter and grafting strategy Derived from readily and commercially available chiral starting chemicals

Novel Sulfamide-Amine Alcohol Ligands (SAA) Application of Grafting Strategy Boshun Wan*, J. Org. Chem. 2004, 69, 9123

Synthetic route of Ts-Based SAA Ligand

Ts-Based SAA ligands

1. The size of the fluxional group R is a primary determinant of enantioselectivies ? 2. What is the difference effect of R 1, and X …? New Ms,Tf-Based SAA ligands

New Tf-Based SAA ligands

New Ms-Based SAA ligands

1 Asymmetric addition of diethylzinc to aldhydes Application of Reactions 2 Asymmetric addition of phenylacetylene to aldehydes 4 Asymmetric hydrogenation transfer reaction 3 Asymmetric addition of phenylacetylene to ketones

How about SAA ligands? 1. Asymmetric addition of diethylzinc to aldhydes Figure: Chiral sulfonamide-type ligands using Ti(O i Pr) 4 for dialkylzinc addition to aldehyde.

Pu, L.; Yu, H,-B. Chem. Rev. 2001, 101, 757. Our idea 1. Asymmetric addition of diethylzinc to aldhydes

(S)(S) (R)(R)

Comparisons 1. Asymmetric addition of diethylzinc to aldhydes

entryligandR % isolated yield % ee 17bPh86>99 (R) 24o-Cl-Ph74>99 (S) 341-naphthyl70>99 (S) 47bo-Cl-Ph92>99 (R) 57b1-naphthyl70>99 (R) 64c-C 6 H 11 51>99 (S) 77bi-C 4 H 9 36>99 (R) 1. Asymmetric addition of diethylzinc to aldhydes

Summary-1 Boshun Wan*, J. Org. Chem. 2004, 69, 9123

Zn + Ligand Ti + Zn + Ligand Characteristics: 2. Asymmetric addition of phenylacetylene to aldehydes Reviews see: (a) Tetrahedron 2003, 59, 9873 (b) Eur. J. Org. Chem. 2004, 4095

(a) T. Mukaiyama* et al, Chem. Lett. 1979, 447; (b) E. J. Corey* et al, J. Am. Chem. Soc.1994, 116,3151; (c) E.M. Carreira* et al, J. Am. Chem. Soc. 2000, 122, 1806; (d) E.M. Carreira* et al, Org. Lett. 2000, 2, (e) B. Jiang* et al, Chem. Commun. 2002, 1524; (f) B. Jiang* et al, Tetrahedron Lett. 2002, 43, Amine alcohols species 2. Asymmetric addition of phenylacetylene to aldehydes

(a) S. Dahmen, Org. Lett. 2004, 6, 2113; (b) R. Wang* et al, Tetrahedron: Asymmetry 2004, 15, 3155; (c) R. Wang* Tetrahedron Lett. 2005, 46, 863; (d) C. Wolf*, J. Am. Chem. Soc. 2006, 128, 10996; (e) B. M. Trost* et al, J. Am. Chem. Soc. 2006, 128, 8; (f) B. G. Davis* et al, Org. Lett. 2006, 8, 207 Amine alcohols species 2. Asymmetric addition of phenylacetylene to aldehydes

Sulfonamides and Amides ligands (a) (b) R. Wang* et al, Adv. Synth. Catal. 2006, 348, 506; (b) R. Wang* et al, Adv. Synth. Catal. 2005, 347, ; (c) R. Wang* et al,Org.Lett 2004, 6, 1193; (d) R. Wang* et al, Angew. Chem. Int. Ed. 2003, 42, 5747; (e) X. P. Hui* et al, J. Mol. Catal. A-Chemical 2007, 269, 179. (f) J. X. Xu* et al, Org. Lett., 2005, 7, 2081; 2. Asymmetric addition of phenylacetylene to aldehydes

Binaphthol-based ligands (a) L. Pu* et al, Org. Lett. 2002, 4, 4143; (b) L. Pu* et al, Org. Lett. 2002, 4, 1855; (c) A. S. C. Chan* et al, J. Am. Chem. Soc. 2002, 124, 12636; (d) A. S. C. Chan* et al, Chem. Commun., 2002, 172 (e) M. Shibasaki* et al, J. Am. Chem. Soc. 2005, 127, 13760; 2. Asymmetric addition of phenylacetylene to aldehydes

Binaphthol-based ligands (a) L. Pu* et al, Angew. Chem. Int. Ed. 2006, 45, 122; (b) L. Pu* et al, J. Org. Chem. 2007, 72, 4340 ; (c) L. Pu Tetrahedron 2006, 62, 9335; (d) L. Pu* et al, P. N. A. S. 2004, 101, 5417; (e) A. S. C. Chan* et al, Tetrahedron: Asymmetry 2003, 14, Asymmetric addition of phenylacetylene to aldehydes

High e.e. Zn(OTf) 2 Ti(O i Pr) 4 High e.e. How about SAA ligands? $ =10 times of ZnEt 2 Moisture sensitive Origins 2. Asymmetric addition of phenylacetylene to aldehydes

EntryLigandRIsolated yield (%)ee (%) b 14Ph Ph p-F-Ph p-Br-Ph p-MeO-Ph p-Me-Ph p-NO 2 -Ph o-Me-Ph naphthyl cyclohexyl isovaleric pelargonic cyclohexyl9926 Boshun Wan*, Chirality, 2005, 17, Asymmetric addition of phenylacetylene to aldehydes

(a) Cozzi, P. G. Angew. Chem. Int. Ed. 2003, 42, 2895 (b) Saito, B.; Katsuki, T. Synlett 2004, 9, 1557 Lewis acid center Lewis base center Zn (salen) as a bifunctional complex 3. Asymmetric addition of phenylacetylene to ketones

a.Lu, G.; Li, X. S.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew.Chem., Int. Ed. 2003, 42, 5057 b.Zhou, Y.; Wang, R.; Xu, Z.; Yan, W.; Liu, L.; Kang, Y.; Han, Z. Org. Lett. 2004, 6, 4147 c.Liu, L.; Wang, R.; et al, J. Org. Chem. 2005, 70, Chiral ligands for aromatic ketones 3. Asymmetric addition of phenylacetylene to ketones

a. Cozzi, P. G.; Alesi, S. Chem. Commun. 2004, b. Wang, R.*; et al, Tetrahedron: Asymmetry 2004, 15, Without using zinc reagent or Lewis acid 3. Asymmetric addition of phenylacetylene to ketones

? No additional Lewis acid Poor catalysts Expectation 3. Asymmetric addition of phenylacetylene to ketones

The valuated ligands in the reaction 3. Asymmetric addition of phenylacetylene to ketones

EntrySubstrateYield (%)ee (%) 1acetophenone ′-chloroacetophenone ′-fluororoacetophenone ′-methylacetophenone ′-chloroacetophenone ′-naphthacetophenone ′-naphthacetophenone6583 Boshun Wan*, J. Mol. Catal. A: Chemical 2005, 237, Asymmetric addition of phenylacetylene to ketones

[RuCl 2 (p-cymene)] 2 / ligand i PrOH/ KOH HCOOH/ (C 2 H 5 ) 3 N H 2 O / HCOONa 4. Asymmetric hydrogenation transfer reaction

TsDPEN Known chiral ligands (H 2 O/HCOONa) 4. Asymmetric hydrogenation transfer reaction

The evaluated ligands 4. Asymmetric hydrogenation transfer reaction

cheaper storable Successful conversion 4. Asymmetric hydrogenation transfer reaction

entryketone% conversion% ee (R) 217>9943 (R) 318>9950 (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R) 4. Asymmetric hydrogenation transfer reaction

 Firstly introducing a new type of chiral N,O-ligand hydrochloride into the reaction performed in water and air.  The catalyst is stable, commercially available and low-cost.  The destined products were easily departed from the catalytic system by adding some ether in the reaction mixture. Boshun Wan*, Tetrahedron Lett. 2005, 46, 7341 Advantage: 4. Asymmetric hydrogenation transfer reaction

(S)-Chiral Ligand (S)- or (R)- Products (R)-Chiral Ligand (S)-Chiral Ligand (S)-Chiral Ligand* (S)-Chiral Ligand+Additive (R)-Chiral Ligand × Reversal of enantioselectivity

Boshun Wan*, J. Mol. Catal. A: Chemical 2005, 225, 33 Reversal of enantioselectivity by adding Ti(O i Pr) 4 Reaction 1 Reversal of enantioselectivity

Reversal of enantioselectivity by adding Ti(O i Pr) 4 Boshun Wan*, J. Mol. Catal. A: Chemical 2005, 232, 9. Reaction 2 Reversal of enantioselectivity

Boshun Wan*, J. Mol. Catal. A: Chemical 2005, 232, 9. Relationship between Ti/L and ee Reversal of enantioselectivity

Conclusions Design and synthesized the novel chiral sulfamide- amine alcohols ligands (SAA) using multicenter and grafting strategy Applied them into asymmetric addition reactions  Applied the strategy and novel ligands into other asymmetric reactions

Acknowledgements 毛金成 博士 金 薇 博士生 黎红旺 硕士生

Thank You for Your Attention! Welcome to My Group!