Bell Work 1) Find the value of the variables 2)Write the conditional and converse of each biconditional, and state if the biconditional is true or false.

Slides:



Advertisements
Similar presentations
Geometry 2.3 Big Idea: Use Deductive Reasoning
Advertisements

Deductive Reasoning. Objectives I can identify an example of inductive reasoning. I can give an example of inductive reasoning. I can identify an example.
Chapter 2 Geometric Reasoning
Lesson 2.3 p. 87 Deductive Reasoning Goals: to use symbolic notation to apply the laws of logic.
4.3 Warm Up Find the distance between the points. Then find the midpoint between the points. (5, 2), (3, 8) (7, -1), (-5, 3) (-9, -5), (7, -14)
Get Ready To Be Logical! 1. Books and notebooks out. 2. Supplies ready to go. 3. Answer the following: The sum of 2 positive integers is ___________ True.
Geometry Geometric Proof
The Logic of Geometry. Why is Logic Needed in Geometry? Because making assumptions can be a dangerous thing.
Geometry Unit 2 Power Points Montero to 2.3 Notes and Examples Patterns, Conditional Statements, and BiConditional Statements Essential Vocabulary.
Chapter 2.1 Common Core G.CO.9, G.CO.10 & G.CO.11 Prove theorems about lines, angles, triangles and parallelograms. Objective – To use inductive reasoning.
Warm Up 1. How do I know the following must be false? Points P, Q, and R are coplanar. They lie on plane m. They also lie on another plane, plane n. 2.
Section 2.3 Deductive Reasoning.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Chapter 2.3 Notes: Apply Deductive Reasoning Goal: You will use deductive reasoning to form a logical argument.
Applying Deductive Reasoning Section 2.3. Essential Question How do you construct a logical argument?
Deductive Reasoning Chapter 2 Lesson 4.
Deductive Reasoning.  Conditional Statements can be written using symbolic notation  p represents hypothesis  q represents conclusion  is read as.
2.4 Ms. Verdino.  Biconditional Statement: use this symbol ↔  Example ◦ Biconditional Statement: The weather is good if and only if the sun is out 
2.2 Inductive and Deductive Reasoning. What We Will Learn Use inductive reasoning Use deductive reasoning.
Inductive and Deductive Reasoning. Notecard 30 Definition: Conjecture: an unproven statement that is based on observations or given information.
From conclusions by applying the laws of logic. Symbolic Notation Conditional statement If p, then qp ⟶q Converseq⟶p Biconditional p ⟷ q.
Section 2-2: Conditional Statements. Conditional A statement that can be written in If-then form symbol: If p —>, then q.
Jeopardy $100 Inductive and Deductive Reasoning Conditional Statements Postulates & Diagrams Properties Segments & Angle Pair Relationship $200 $300 $400.
WARM UP. DEDUCTIVE REASONING LEARNING OUTCOMES I will be able to use the law of detachment and syllogism to make conjectures from other statements I.
2.1 Conditional Statements Ms. Kelly Fall Standards/Objectives: Students will learn and apply geometric concepts. Objectives: Recognize the hypothesis.
Inductive and Deductive Reasoning. Definitions: Conditionals, Hypothesis, & Conclusions: A conditional statement is a logical statement that has two parts:
Ch. 2.3 Apply Deductive Reasoning
2.3 Deductive Reasoning Geometry. Standards/Objectives Standard 3: Students will learn and apply geometric concepts. Objectives: Use symbolic notation.
2.3 Deductive Reasoning Geometry. Standards/Objectives Standard 3: Students will learn and apply geometric concepts. Objectives: Use symbolic notation.
Holt Geometry 2-4 Biconditional Statements and Definitions Write and analyze biconditional statements. Objective.
Section 2.3: Deductive Reasoning
2.3 Deductive Reasoning p. 87 Reminders Statement Conditional statement Converse Inverse Contrapositive Biconditional Symbols p → q q → p ~p → ~q ~q.
Warm up… Write the converse, inverse, and contrapositive. Whole numbers that end in zero are even. Write as a biconditional. The whole numbers are the.
5-Minute Check Converse: Inverse: Contrapositive: Hypothesis: Conclusion: The measure of an angle is less than 90  The angle is acute If an angle is.
Inductive and Deductive Reasoning. Notecard 29 Definition: Conjecture: an unproven statement that is based on observations. You use inductive reasoning.
2.3 Deductive Reasoning. Symbolic Notation Conditional Statements can be written using symbolic notation. Conditional Statements can be written using.
Reasoning and Proof Chapter – Conditional Statements Conditional statements – If, then form If – hypothesis Then – conclusion Negation of a statement-
Inductive Reasoning Notes 2.1 through 2.4. Definitions Conjecture – An unproven statement based on your observations EXAMPLE: The sum of 2 numbers is.
Reasoning and Proof Chapter Use Inductive Reasoning Conjecture- an unproven statement based on an observation Inductive reasoning- finding a pattern.
Chapter 2, Section 1 Conditional Statements. Conditional Statement Also know as an “If-then” statement. If it’s Monday, then I will go to school. Hypothesis:
2.3 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Apply Deductive Reasoning.
2.3 DEDUCTIVE REASONING GOAL 1 Use symbolic notation to represent logical statements GOAL 2 Form conclusions by applying the laws of logic to true statements.
Essential Question: What is deductive reasoning?
1. Write the converse, inverse, and contrapositive of. “If
Section 2.3 – Deductive Reasoning
Chapter 1 Lessons 1-4 to 1-8.
Warm Up For this conditional statement: If a polygon has 3 sides, then it is a triangle. Write the converse, the inverse, the contrapositive, and the.
Reasoning Proof and Chapter 2 If ….., then what?
Chapter 2 Review Geometric Reasoning.
Chapter 2 Reasoning and Proof.
2.2 Deductive Reasoning Objective:
Sec. 2.3: Apply Deductive Reasoning
2.3 Deductive Reasoning.
1. Write the converse, inverse, and contrapositive of. “If
1. Write the converse, inverse, and contrapositive of the conditional below and determine the truth value for each. “If the measure of an angle is less.
2.3 Apply Deductive Reasoning
2-4 Deductive Reasoning 8th Grade Geometry.
Deductive Reasoning BIG IDEA: REASONING AND PROOF
Chapter 2.3 Notes: Apply Deductive Reasoning
Reasoning and Proofs Deductive Reasoning Conditional Statement
Chapter 2.2 Notes: Analyze Conditional Statements
Logic and Reasoning.
Angles, Angle Pairs, Conditionals, Inductive and Deductive Reasoning
TODAY’S OBJECTIVE: Standard: MM1G2
Law of Detachment Law of Syllogism
Lesson 2-R Chapter 2 Review.
Goal 1: Using Symbolic Notation Goal 2: Using the Laws of Logic
Chapter 2 Reasoning and Proof.
4.4: Analyze Conditional Statements.
Presentation transcript:

Bell Work 1) Find the value of the variables 2)Write the conditional and converse of each biconditional, and state if the biconditional is true or false. ***Remember what makes a biconditional statement true. a) You go to Herron if and only if you live in Indianapolis b) Two angles are complementary if and only if they add to 90° c) Two segments are congruent if and only if they have the same measure.

Outcomes I will be able to: 1) Identify the inverse, converse, and contrapositive of a conditional statement 2) Use symbolic notation to represent logical statements 3) Form conclusions by applying laws of logic

Logic Puzzle Determine where each person was born and what their favorite hobby is. Fill in the grid as you go. Shade in the boxes that you know cannot be the answer. Leave Blank the ones that must be true. Once you are finished, check with another group to determine if you are correct or not. Then answer the questions at the bottom of the paper.

Conditional Statements Conditional statements may be written in symbols(symbolic notation) where p represents the hypothesis and q represents the conclusion. For example: Conditional Statement: If the sun is out, then the weather is good p q We can rewrite the conditional as: If p, then q Or it can be written just in symbols as: p --> q

Conditional Example Example 1: : If the Colts have a successful season, then they might have a chance at another Super Bowl title. What does p represent? What does q represent? We can write the above statement symbolically as follows __________ or p --> q The symbol → is read ______. If p, then q then

Example 2 Write the converse of the statement in #1. If the Colts have a successful season, then they might have a chance at another Super Bowl title. What would the symbolic notation be for the converse of the conditional: If p, then q? Converse: If the Colts have a chance at another Super Bowl title, then they have had a successful season. Or just in symbols as: If q then p or q --> p q p

Inverse and Contrapositive Symbols In order to write the inverse and contrapositive we need a symbol for negation The symbol for negation is ~, and is written before the letter. ***It is read as not.

Example If we have the statement “if Angle A measures 80°, then Angle A is acute,” we have the following symbols: p q ~ ~ ~p ~q

Example The inverse symbolically would be: If ~p then ~q, or ~p --->~q It would read: If Angle A is not 80°, then Angle A is not Acute. The converse symbolically would be: If q then p, or q --->p. It would read: If Angle A is acute, then Angle A is 80° The contrapositive would be: If ~q then ~p, or ~q ---> ~p It would read: If Angle A is not acute, then Angle A is not 80° Which of these three statements are true? The contrapositive

On Your Own Try the example in your notes on your own. Let p be “You come in early” and q be “Mrs. Stall will help you with Geometry.” Conditional statement: p ---> q a) Write the contrapositive b) Write the inverse I will be coming around to check on your work

Example Using p and q below, write the symbolic statement. p: The angle has a measure of 120°. q: The angle is not acute. p→q ~q ~p q→p ~q→~p ~p→~q

Deductive Reasoning Logical Argument: Deductive reasoning - using facts, definitions, and accepted properties in a logical order to write a logical argument. Note: This differs from inductive reasoning (as used in Chapter 1). Inductive reasoning used patterns to make conjectures. Deductive vs. Inductive – Which is Which? a. Andrea knows that Robin is a sophomore and Todd is a junior. All the other juniors that Andrea knows are older than Robin. So, Todd is older than Andrea. b. Andrea knows that Todd is older than Chan. She also knows that Chan is older than Robin. Therefore, Todd is older than Robin.

Deductive Reasoning There are two laws of deductive reasoning: 1) Law of detachment - If p --> q is a true conditional statement and p is true, then we can conclude that q is true Example: Conditional: If two angles form a linear pair, then they are supplementary. Fact: Angle A and Angle B are a linear pair. What can we conclude? Conclusion: Angle A and Angle B are supplementary

Deductive Reasoning 2) Law of Syllogism - If p --> q and q --> r are true conditional statements, then we can conclude that p --> r is true *Will be given 2 statements and can make a 3rd Example: Conditional 1: If a bird is the fastest bird on land, then it is the largest of all birds. Conditional 2: If a bird is the largest of all birds, then it is an ostrich What can we conclude? Conclusion: If a bird is the fastest bird on land, then it is an ostrich

Examples Examples: 1. Determine if statement (3) follows from (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid. (a) (1) If an angle A measures more than 90°, then it is not acute. (2) (3) is not acute.

Examples (b) (1) If you wear the school colors, then you have school spirit. (2) If you have school spirit, then the team feels great. (3) If you wear the school colors, then the team will feel great.

Examples (c) (1) If you eat too much candy, then you will get sick. (2) Naomi got sick. (3) Naomi ate too much candy.

Biconditional Statements Symbolically Biconditional: P if and only if q. Remember, if the biconditional is true, then the conditional and the converse are both true In symbols p q ***Arrow goes both ways because the biconditional is both the conditional and the converse

Exit Ticket 1. If the statements p --> q and q --> r are true, then the statement p --> r is true by the Law of_______ ? 2. If the statement p --> q is true and p is true, then q is true by the Law of _______?. 3. State whether the following argument uses inductive or deductive reasoning: “If it is Friday, then Kendra’s family has pizza for dinner. Today is Friday, therefore, Kendra’s family will have pizza for dinner.” 4. Given the notation for a conditional statement is p --> q, what statement is represented by q --> p?