Lesson 2.4 Logical Sequencing & Conditional Statements Objective: Using logical sequencing and conditional statements, converse, inverse, and contrapositive.

Slides:



Advertisements
Similar presentations
Inverses, Contrapositives, and Indirect Reasoning
Advertisements

1a)I can identify the hypothesis and the conclusion of a conditional 1b)I can determine if a conditional is true or false 1c)I can write the converse of.
Problems to study for the chapter 2 exam
Conditional Statements youtube. com/watch SOL: G.1a SEC: 2.3.
2.2: An Introduction to Logic
BASKETBALL Questions….
LG.1.G.1 Define, compare and contrast inductive reasoning and deductive reasoning for making predictions based on real world situations, Venn diagrams,
WEDNESDAY, OCTOBER 19 Conditional Statements. Correct Homework See Post-It Note on board for solutions to.
For each, attempt to create a counter example or find the shape is MUST be….. Quadrilateral Properties.
Analyzing Conditional Statements A _______________________________ is a logical statement that has two parts, a hypothesis and a conclusion.
2.1 Conditional Statements Goals Recognize a conditional statement Write postulates about points, lines and planes.
3.5 What’s the Condition? Pg. 16 Conditional Statements.
Learning Targets I can recognize conditional statements and their parts. I can write the converse of conditional statements. 6/1/2016Geometry4.
Lesson 2-3 Conditional Statements. 5-Minute Check on Lesson 2-2 Transparency 2-3 Use the following statements to write a compound statement for each conjunction.
Wednesday, October 24 th Aim: In what other ways can we potentially change the truth value of a conditional statement? Do Now: Write a TRUE conditional.
Section 2-1: Conditional Statements Goal: Be able to recognize conditional statements, and to write converses of conditional statements. If you eat your.
Conditional Statements
Conditional Statements
2.2 – Analyze Conditional Statements. Conditional Statement Hypothesis Conclusion Logical statement written in if-then form. If p, then q. pqpq Statement.
 What are conditionals & biconditionals?  How do you write converses, inverses, and contrapositives?
Unit 2 Part 1 Conditional, Converse, Inverse, and Contra- Positive Statements.
Inductive and Deductive Reasoning. Notecard 30 Definition: Conjecture: an unproven statement that is based on observations or given information.
Deductive Structure Statements of Logic. The Structure.
Bell Work If I was President, then…. If I can change the world, then…. If I have a lot of money, then…..
1. Grab board/marker for your group 2. Do WarmUp below V S T M P R TP bisects VS and MR. VM is congruent to SR. MP = 9, VT = 6 Perimeter of MRSV = 62 Find.
Section 2-1 Conditional Statements. Conditional statements Have two parts: 1. Hypothesis (p) 2. Conclusion (q)
Conditional Statements Section 2-3 Conditional Statements If-then statements are called conditional statements. The portion of the sentence following.
2.2.1 Analyze Conditional Statements and Proof Chapter 2: Reasoning and Proof.
Warm up 1.Re-write the following statements as an if-then statement. 2.State the converse of the statement. a.The midpoint of a segment is a point that.
MM1G2.b. Understand and use the relationships among the statement and it converse inverse and contrapositive. Destiny and Scott.
3.5/3.7 Converses, Negations and Contrapositives Warm-up (IN) Learning Objective: to write converses, inverses and contrapositives and use them in logical.
Monday August 19th Logic and Conditional Statements
2.3 CONDITIONAL STATEMENTS Geometry R/H. A Conditional statement is a statement that can be written in the form: If P, then Q. The hypothesis is the P.
Inductive and Deductive Reasoning. Definitions: Conditionals, Hypothesis, & Conclusions: A conditional statement is a logical statement that has two parts:
2.1 Conditional Statements Goal 1: Recognizing Conditional Statements Goal 2: Using Point, Line, and Plane Postulates CAS 1,3.
What is a Biconditional Students will be able to: 1.Rewrite compound sentences in conditional form 2.Find the biconditional of a conditional 3.Tell when/why.
2.1 – Conditional Statements  Conditional Statement  If-Then Form  Hypothesis  Conclusion  Converse  Negation  Inverse  Contrapositive  Equivalent.
Unit 2-2: Conditional Statements Mr. Schaab’s Geometry Class Our Lady of Providence Jr.-Sr. High School
2.1 CONDITIONAL STATEMENTS 10/2. Learning Targets I can find the truth value given a conditional and a converse I can rewrite a statement as a conditional.
Properties of Quadrilaterals SOL 6.13
Section 2.1 Geometric Statements. Definitions: Conditionals, Hypothesis, & Conclusions: A conditional statement is a logical statement that has two parts:
Inductive and Deductive Reasoning. Notecard 29 Definition: Conjecture: an unproven statement that is based on observations. You use inductive reasoning.
Transparency 2 Click the mouse button or press the Space Bar to display the answers.
2.1, 2.2 and 5.4: Statements and Reasoning. Conditional is an if-then statement that contains two parts. The part following the if is the Hypothesis.
Lesson 2-1 Conditional Statements 1 Lesson 2-3 Conditional Statements.
Inductive and Deductive Reasoning. Notecard 30 Definition: Conjecture: an unproven statement that is based on observations or given information.
Inductive Reasoning Notes 2.1 through 2.4. Definitions Conjecture – An unproven statement based on your observations EXAMPLE: The sum of 2 numbers is.
Section 2.2 Homework Quiz Question Put the following Conditional Statement into If Then Form: All birds have feathers.
Chapter 2: Reasoning and Proof Section Conditional Statements.
Conditional Statements A conditional statement has two parts, the hypothesis and the conclusion. Written in if-then form: If it is Saturday, then it is.
Conditional Statements I CAN… Write conditional, converse, and biconditional statements.
Conditional Statements I CAN… Write conditional, converse, and biconditional statements.
Conditional Statements.  Conditional Statement: A statement that can be written in the form “If p then q.”  Every Conditional Statement has 2 parts:
Warm Up 1.) Adds one more side to the polygon. 2.)
Conditional Statements
Conditional Statements
2.2 – Analyze Conditional Statements
Conditional Statements
Conditional Statements
Lesson 2-3: Conditional Statements
Chapter 2 Reasoning and Proof.
Properties of Special Parallelograms
2.1 conditionals, 2.2 Biconditionals, 5.4 inverse and contrapositive
Click the mouse button or press the Space Bar to display the answers.
2.1 conditionals, 2.2 Biconditionals, 5.4 inverse and contrapositive
Logical Sequencing & Conditional Statements
Conditional Statements
DRILL What would be the coordinates of the point (-2, 4) if it was reflected over the y-axis? If you dilate the point (-3, 9) using a scale factor of 1/3,
2.2 If - Then Statements OBJ: (1)To Write Statements in If-Then Form
Logic and Reasoning.
Presentation transcript:

Lesson 2.4 Logical Sequencing & Conditional Statements Objective: Using logical sequencing and conditional statements, converse, inverse, and contrapositive.

Logical sequencing is useful to know because it helps us to think logically through a problem, and put a solution in a form that everyone can understand and follow. (Think about your teacher explaining how to do a math problem to you…out loud…in words!) In order to do this we use logical sequences, and we must begin with conditional statements!!! Why are we doing this?

Conditional Statements A conditional statement is written in the form if p, then q. If a given condition is met (if p), then another condition is true or an event will happen (then q). The if-clause is the hypothesis; the then- clause is the conclusion.

Conditional Statements Ex 1.) If you don’t do your homework, then you will get a zero. Ex 2) Rewrite the statement in if-then form: 2.) Every multiple of 4 is also a multiple of 2. If a number is a multiple of 4, then it is a multiple of 2. True or False? True p - Hypothesis q - Conclusion

Logical Order When given several related conditional statements, you must put them in logical order. The conclusion of one statement will flow into the hypothesis of the next. This is what we do in a paragraph proof!!!

Logical Order – Put the following if-then statements in order A. If Cameron graduates with a degree, then he will make a lot of money. B. If Cameron studies hard, then his grades will be good. C. If Cameron makes a lot of money, then he will be able to buy a new car. D. If Cameron attends college, then he will graduate with a degree. E. If Cameron has good grades, then he will be able to attend college. Logical Order: B. If Cameron studies hard, then his grades will be good. E. If Cameron has good grades, then he will be able to attend college. D. If Cameron attends college, then he will graduate with a degree. A. If Cameron graduates with a degree, then he will make a lot of money. C. If Cameron makes a lot of money, then he will be able to buy a new car. Conclusion: If Cameron studies hard, then he will be able to buy a new car. This is an example of a SYLLOGISM – it is just a logical progression, you will do one on your homework

Logical Order Ex. 2 – Put the statements in logical order. A. If a shape is a square, then it is a rhombus. B. If a shape is a parallelogram, then it is a quadrilateral. C. If a shape is a quadrilateral, then it is a polygon. D. If a shape is a rhombus, then it is a parallelogram. A. If a shape is a square, then it is a rhombus. D. If a shape is a rhombus, then it is a parallelogram. B. If a shape is a parallelogram, then it is a quadrilateral. C. If a shape is a quadrilateral, then it is a polygon. Conclusion: If a shape is a square, then it is a polygon.

Converse The converse of a conditional statement is formed by switching the places of the hypothesis and conclusion. The sentence if p, then q becomes if q, then p. What is the converse? Is the given statement true or false? Write the converse statement for each conditional statement. Is the converse true or false? If the converse is false, come up with a counter example.

Examples: 1. If a quadrilateral is a rectangle, then it is a parallelogram. TRUE If a quadrilateral is a parallelogram, then it is a rectangle. False It could be a rhombus

Inverse The inverse of a conditional statement is formed by negating the hypothesis and the conclusion. The sentence if p, then q becomes if not p, then not q. What is the Inverse? Ex: If it is sunny outside, then I will go running. Becomes… If it is not sunny outside, then I will not go running.

Is the given statement true or false? Write the inverse statement for each conditional statement. Is the inverse true or false? If the inverse is false, come up with a counter example. 4. Example: If two lines are perpendicular, then they intersect. TRUE False If two lines are not perpendicular, then they don’t intersect.

Contrapositive The contrapositive of a conditional statement is formed in two steps. 1. Form the converse of the statement 2. Form the inverse of the converse. In other words, the sentence if p, then q becomes if not q, then not p. What is a contrapositive Statement Is the given statement true or false? Write the contrapositive statement for each conditional statement. Is the contrapositive true or false? If the contrapositive is false, come up with a counter example.

Examples 7. If a polygon has just four sides, then it is a quadrilateral. If it is not a quadrilateral, then it is not a polygon with four sides. TRUE 8. If 2 angles form a straight line, then their sum is. TRUE If the sum is not, then the 2 angles don’t form a straight line. TRUE

When will they be true: If your original is true then your _____________is usually true and usually your ____________and ___________ will be __________ contrapositive FALSE inverse converse

When will they be true: If your original is false then your _____________is false and usually your ____________and ___________ will be __________ contrapositive TRUE inverse converse

Homework Worksheet 2.4 and Syllogism Poster Your syllogism poster is easier than you think!!....