1/47 Recent Progress in Gamma-ray Bursts: S. R. Kulkarni California Institute of Technology Image Credit: NASA E/PO, Sonoma State University, Aurore Simonnet.

Slides:



Advertisements
Similar presentations
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
Advertisements

1 Explaining extended emission Gamma-Ray Bursts using accretion onto a magnetar Paul O’Brien & Ben Gompertz University of Leicester (with thanks to Graham.
SOFT GAMMA REPEATERS Kevin Hurley UC Berkeley Space Sciences Laboratory THE SGR-SHORT BURST CONNECTION Kevin Hurley UC Berkeley Space Sciences Laboratory.
Bright broad-band afterglows of gravitational wave bursts from mergers of binary neutron stars Xuefeng Wu Purple Mountain Observatory Chinese Center for.
Gamma-Ray bursts from binary neutron star mergers Roland Oechslin MPA Garching, SFB/TR 7 SFB/TR7 Albert Einstein‘s Century, Paris,
Gamma Ray Bursts S. R. Kulkarni California Institute of Technology.
Raffaella Margutti Harvard – Institute for Theory and Computation On behalf of the Harvard SN forensic team Kyoto2013 What happens when jets barely break.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Wen-fai Fong Harvard University Advisor: Edo Berger LIGO Open Data Workshop, Livingston, LA GRB ACS/F606W.
Edo Berger (Harvard CfA) Eliot Quataert, Siva Darbha, Dan Kasen, & Daniel Perley (UC Berkeley) Almudena Arcones (U Basel) & Gabriel Martinez-Pinedo (GSI,
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.
Constraining the Properties of Dark Energy Using GRBs D. Q. Lamb (U. Chicago) High-Energy Transient ExplorerSwift Department of Astronomy, Nanjing University.
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
A burst of new ideas Nature Vol /28 December 2006 徐佩君 HEAR group meeting 12/
Short Bursts Daniel Perley Astro November 2005.
The general theory of relativity is our most accurate description of gravitation Published by Einstein in 1915, this is a theory of gravity A massive object.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
1 GRB Host Galaxies S. R.Kulkarni, E. J. Berger & Caltech GRB group.
Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy I: Gamma-Ray Bursts Geoff Bower.
Solution to the Short GRB Mystery D. Q. Lamb (U. Chicago) “New Views of the Universe” Kavli Institute Symposium in Honor of David Schramm Chicago, IL,
COSMIC GAMMA-RAY BURSTS The Current Status Kevin Hurley UC Berkeley Space Sciences Laboratory.
Modelling the GRB light curves using a shock wave model
Black holes: do they exist?
Gamma-Ray Bursts: The Biggest Explosions Since the Big Bang Edo Berger.
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
Francisco J Virgili Prompt GRB Conference, 2011 March 5, 2011; Raleigh, NC.
Gamma-ray Bursts in the E-ELT era Rhaana Starling University of Leicester.
A New Chapter in Radio Astrophysics Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts and Their Afterglows AAS 200 th meeting, Albuquerque,
Gamma-Ray Bursts and Supernovae Tsinghua Transient Workshop 8 Nov 2012 Elena Pian INAF-Trieste Astronomical Observatory, Italy & Scuola Normale Superiore.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
QSO -  QSO -  GRB ANALOGY HAVE THE SAME 3 BASIC INGREEDIENTS (M. & Luis Rodriguez, S&T 2002) AN UNIVERSAL MAGNETO-HYDRODINAMIC MECHANISM FOR JETS ?
Recent Results and the Future of Radio Afterglow Observations Alexander van der Horst Astronomical Institute Anton Pannekoek University of Amsterdam.
New Views of Compact Object Mergers Via Short Gamma-Ray Bursts Derek B. Fox Astronomy & Astrophysics Penn State University New Views of the Universe –
1 Short GRBs - and other recent developments in GRBs Tsvi Piran ( HU, Jerusalem) Dafne Guetta (Rome Obs.)
Gamma-Ray Bursts Mano-a-Mano. Short bursts T
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Short Gamma-Ray Bursts and Compact Binary Mergers – Predictions for LIGO Ehud Nakar The California Institute of Technology LIGO seminar, 2005 Dec. 9.
Studying GRB Environments and Progenitors with Absorption Spectroscopy Derek B. Fox Astronomy & Astrophysics Penn State University Image: Aurore Simonnet,
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
1 Central Engines of Gamma-Ray Bursts & Supernovae S. R. Kulkarni California Institute of Technology
L. Piro - ILIAS meeting Gamma-Ray Bursts Luigi Piro Istituto Astrofisica Spaziale Fisica Cosmica - Roma INAF.
The Progenitors of Short-Hard GRBs from an Extended Sample of Events Avishay Gal-Yam Hubble Fellow CALTECH.
Moriond – 1 st -8 th Feb 2009 – La Thuile, Italy. Page 1 GRB results from the Swift mission Phil Evans, Paul O'Brien and the Swift team.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
The nature of the longest gamma-ray bursts Andrew Levan University of Warwick.
Edo Berger − Harvard University Toward the Progenitors of Short-Duration Gamma-Ray Bursts The Prompt Activity of Gamma-Ray Bursts: their Progenitors, Engines,
Active Galaxies and Supermassive Black Holes Chapter 17.
Electromagnetic Signal & Gravitational Wave emission
Cosmological Heavy Ion Collisions: Colliding Neutron Stars and Black Holes Chang-Hwan Lee
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Eric Charles Two recent developments with Gamma Ray Burst Classification And their implications for GLAST Glast Science Lunch Nov. 2, 2006.
1 Gravitational waves from short Gamma-Ray Bursts Dafne Guetta (Rome Obs.) In collaboration with Luigi Stella.
Classification of Gamma-Ray Bursts: an observational review Paolo D’Avanzo INAF – Osservatorio Astronomico di Brera.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Gamma-Ray Bursts Please press “1” to test your transmitter.
Short-Duration Gamma-Ray Burst Central Engines
Gamma-ray Bursts and Supernovae
Short Gamma Ray Bursts Curtis DeWitt.
GRB-Supernova observations: State of the art
Galaxies With Active Nuclei
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Center for Computational Physics
Galaxies With Active Nuclei
Presentation transcript:

1/47 Recent Progress in Gamma-ray Bursts: S. R. Kulkarni California Institute of Technology Image Credit: NASA E/PO, Sonoma State University, Aurore Simonnet

2/47

3/47 Long & Short

4/47 The Gang and collaborators T. Piran, Hebrew U. P. A. Price, U. Hawaii J. Rich, ANU M. Rauch, Carnegie K. Roth, Gemini Obs M. Roth, Carnegie D. J. Sand, Caltech B. P. Schmidt, ANU S. Shectman, Carnegie A. M. Soderberg, Caltech M. Takada, Tohuku U. T. Totani, Kyoto U. W. T. Vestrand, LANL D. Watson, U. Copenhagen R. White, LANL P. Wozniak, LANL J. Wren, LANL G. Kosugi, NAOJ W. Krzeminski, Carnegie S. R. Kulkarni, Caltech P. Kumar, U. Texas D. C. Leonard, Caltech B. L. Lee, U. Toronto A. MacFadyen, IAS P. J. McCarthy, Carnegie D. -S. Moon, Caltech D. C. Murphy, Carnegie E. Nakar, Caltech H. S. Park, LLNL B. Penprase, Pomona C. S. E. Persson, Carnegie B. A. Peterson, ANU M. M. Phillips, Carnegie K. Aoki, NAOJ E. Berger, Carnegie P. B. Cameron, Caltech R. A. Chevalier, U. Virginia S. B. Cenko, Caltech L. L. Cowie, U. Hawaii A. Dey, NOAO S. Evans, LANL D. B. Fox, Penn S./Caltech D. A. Frail, NRAO H. Furusawa, TIT A. Gal-Yam, Caltech F. A. Harrison, Caltech K. C. Hurley, UC Berkeley M. M. Kasliwal, Caltech N. Kawai, TIT

5/47 Collaborators T. Piran, Hebrew U. P. A. Price, U. Hawaii J. Rich, ANU M. Rauch, Carnegie K. Roth, Gemini Obs M. Roth, Carnegie D. J. Sand, Caltech B. P. Schmidt, ANU S. Shectman, Carnegie A. M. Soderberg, Caltech M. Takada, Tohuku U. T. Totani, Kyoto U. W. T. Vestrand, LANL D. Watson, U. Copenhagen R. White, LANL P. Wozniak, LANL J. Wren, LANL G. Kosugi, NAOJ W. Krzeminski, Carnegie S. R. Kulkarni, Caltech P. Kumar, U. Texas D. C. Leonard, Caltech B. L. Lee, U. Toronto A. MacFadyen, IAS P. J. McCarthy, Carnegie D. -S. Moon, Caltech D. C. Murphy, Carnegie E. Nakar, Caltech H. S. Park, LLNL B. Penprase, Pomona C. S. E. Persson, Carnegie B. A. Peterson, ANU M. M. Phillips, Carnegie K. Aoki, NAOJ E. Berger, Carnegie P. B. Cameron, Caltech R. A. Chevalier, U. Virginia S. B. Cenko, Caltech L. L. Cowie, U. Hawaii A. Dey, NOAO S. Evans, LANL D. B. Fox, Penn S./Caltech D. A. Frail, NRAO H. Furusawa, TIT A. Gal-Yam, Caltech F. A. Harrison, Caltech K. C. Hurley, UC Berkeley M. M. Kasliwal, Caltech N. Kawai, TIT

6/47 Long Duration Bursts: Collapsar Model: Woosley, Heger, MacFadyen Kulkarni et al. Bloom et al. Frail et al. Berger et al. Soderberg etal

7/47 SN 1998bw/GRB Galama et al. 1998, Kulkarni et al E  ~10 48 erg (isotropic)

8/47 Collapsar: The Movie A Hollywood-Bollywood Production From Bogus Enterprise, A Division of General Propaganda

9/47

10/47 With physics and lots of hardwork (MacFadyen)

11/47 A New Family of Cosmic Explosions : Soderberg

12/47 Keck Laser Guide Star AO

13/47 Progenitors of Ibc SNe: A Hot Result

14/47 Palomar 60-inch: A second life

15/47 Exploitation of GRBs has already begun Reichart et al Berger et al. GRB : z=6.2 Observations at 3 hours (P60, optical; SOAR, NIR)

16/47

17/47 Two classes of GRBs Short - Hard Long - Soft

18/47 Summarizing Four Papers 1.Fox et al. “The afterglow of GRB and the nature of the short-hard γ-ray bursts”, Nature, October 6, Berger et al. “A merger origin for short γ-ray bursts inferred from the afterglow and host galaxy of GRB ”, Nature, November, Kulkarni “Modeling Macronovae” 4.Kulkarni et al. “Constraints on supernova-like emission associated with the short-hard gamma-ray burst b

19/47 Toward the SHB Progenitor: Redux How far away are they? How much energy do they release? –is the energy release isotropic or collimated? –are the central engines long or short-lived? –Is there associated non-relativistic ejecta? What are the progenitors? –Clue (macro) = host galaxy + offset –Clue (micro) = circumburst environment The key to answering these questions has been the precise positions enabled by the discovery of long-lived afterglows.

20/47 GRB B: Swift Detection BAT: very faint GRB XRT: T+62 s detects 11 photons(!) No optical, no radio. very faint limits –Low energy event and/or low density medium? Giant elliptical galaxy in cluster. z=0.22 Host? Gehrels et al T 90 =40 ms

21/47 Bloom et al NSC J z=0.225

22/47 Kulkarni et al GRB B: Keck/Subaru Error radius = 9.3 arcsec

23/47 HST Imaging: No Supernova Kulkarni et al Error radius = 9.3 arcsec 4 HST Epochs May 14 to June sources in XRT error circle Giant elliptical Bloom et al L=1.5L * SFR<0.1 M  yr -1

24/47 Kulkarni et al Panchromatic Studies

25/47 GRB : HETE Detection A Hard spike, 84 keV A Soft (PL) bump (alpha=-2) Roughly equal energy in each component Villasenor et al T 90 =70 ms

26/47 GRB : Accurate Localization Fox et al SXC c GRB

27/47 HST imaging & search for supernova explosion Fox et al. 2005

28/47 GRB : Panchromatic Studies X-ray –source “flares” for initial 6 ks of 18 ks in second epoch Long-lived central engine? –early and late flux do not fit Optical –inconsistent with simple PL decay (slope= > -2.8) –“jet” break at T+10 d –SN limits M R >-12 mag Radio –violate simple AG model Fox et al. 2005; Hjorth et al. 2005

29/47 GRB : Swift Detection Brightest Swift SHB Hard spike/soft bump X-ray, optical and radio afterglow detected Barthelmy al T 90 =40 ms keV keV T 90 =3 s 250 ms 100 s

30/47 Barthelmy al. 2005

31/47 Berger et al GRB : Swift

32/47 Kulkarn i & C ameron Red elliptical z=0.258 L=1.6 L * SFR<0.03 M  yr -1

33/47 Toward the SHB Progenitor How far away are they? –At least some short bursts are z ~ 0.2 How much energy do they release? –About to erg –Evidence for ``jets’’ Is there an associated supernova explosion? –Supernova, if any, are faint (M v > -13) What are they? –Both elliptical and star-forming host galaxies

34/47 Comparison to Long Duratrion Gamma-ray Bursts

35/47 Empirical Connection to Ia Supernovae Nakar & Gal-Yam

36/47 Binary Coalescence 1 Collapsar Magnetar Energy Density Host Offset No SNe The Score Card

37/47 Holy smokes, he is dead?!! Ph: Glendinning

38/47 Coalescence of Neutron Stars (Shibata)

39/47 Black Hole-Neutron Star (Rupert, Janka)

40/47 Macronova Is there a sub-relativistic explosion accompanying short hard bursts? Li & Paczynski 1998 If so, (observationally) > Nova < Supernova => “Mini-supernova” or “Macronova” Kulkarni

41/47 Macronova Model Parameters: M ejecta & v=  c Composition –Free Neutrons –Radioactive Nickel –Neutron Rich Material (non-radioactive) Injection of energy essential for macronova to shine and be detectable

42/47 Nickel Decay

43/47 r-process and s-process elements

44/47

45/47 Comparison to Data (GRB b)  =0.5  =0.05

46/47 The Macronova as a Reprocessor

47/47

48/47

49/47

50/47 Quasars: A Historical Analogy, II Scintillation: Interplanetary Scintillation showed that quasars were compact The Central Engine: After three decades we have a working model involving black holes The Pesky Jets: Questions remain –FRI and FRII –What is the difference between radio quiet and radio loud AGN? Unification: The desire to unify various classes of quasars drove much of quasar research.

51/47 Quasars: A Historical Analogy, I Astonished & Impressed: The immense power and energy of quasars resulting from Schmidt’s discovery of redshift. Amused and Educated: Relativistic effects such as super-luminal motion were anticipated by Rees. Ruthless Exploitation: Ask not why quasars quase but simply use them as light beacons to study the IGM.

52/47 The Macronova as a reprocessor Long lived central soure (e.g. magnetar) Long lived accretion disk There are already indications of tremendous late time activity.

53/47 SHBs Observational Milestones B –rapid arcsecond (+/-9.3”) localization of X-ray emission (AG?) –tentative host is elliptical galaxy in merging cluster (z=0.225) –macronova and SNe limits –sub-arcsecond position of X-ray afterglow –unambiguous identification of spiral host galaxy & redshift (z=0.16) –discovery of optical afterglow –evidence that outflows are jet-like –evidence that central engines remain active for days to weeks –discovery of first radio afterglow –unambiguous identification of red elliptical host galaxy (z=0.257)

54/47 Coalescence --> Black Hole (Shibata)

55/47 Gal Yam

56/47 Possible SHB Progenitors Magnetar –Highly magnetized young neutron star ( G) –Crustal breaking and magnetic reconnection = hyper-flares –short (0.2 s) hard pulse and long (300 s), soft pulse –Dominant timescale is Alfven velocity in NS Collapsar –Massive star core collapses to black hole + short-lived accretion disk –Nicely explains long-soft bursts –Dominant timescale is set by jet propagation in CO core (20 s) –Shorter timescales = collimated jet that wanders due to instabilities Binary Coalescence –Merging compact remnants (WD, NS, & BH) –Hypercritical accretion onto a newly formed BH –Dominant timescale is set by accretion disk viscosity

57/47

58/47 Taken from K.Thorne NSF Review talk Widely expected based on burst brightness distribution – =0.39+/0.02 –luminosity similar to long bursts but duration 100x less –predicts faint AG Future z distribution will constrain merger timescale Tavnir et al (astro-ph) suggests 5-25% SHB are at d<100 kpc Good news for GW detectors like LIGO Guetta & Piran (2005) SF + delay

59/47 GRB/Host Offset Distributions Offsets are notoriously difficult to calculate. –Binary synthesis models –Galactic population of binaries Depends on… –Merger times ( Gyrs) –Proper motions ( km/s) –Host galaxy potential –Binary evolution theory Future offsets can help constrain all of above Fryer, Woosley & Hartmann 1999 Collapsar NS/NS

60/47 Merging Neutron Stars and LIGO-II Taken from K.Thorne NSF Review talk

61/47 NASA “films” a NS/NS Merger Photo Credit: NASA/Dana Berry

62/47 Use this Slide in Italy. X-ray –source “flares” for initial 6 ks of 18 ks in second epoch Long-lived central engine? –early and late flux do not fit Optical –inconsistent with simple PL decay (α 1 =-1.3 and α 2 =-2.8) –“jet” break at T+10 d –SNe limits M R >-12 mag Radio –violate simple AG model Fox et al. 2005

63/47 GRB : Optical Afterglow Price et al and Hjorth et al 2005 T+1.42 d T+2.39 d ΔTΔT Decays as t m Danish Telescope, La Silla

64/47 GRB : Gemini Spectra Prochaska et al. ; Berger et al z=0.257

65/47 Short Bursts and Gravitational Waves

66/47 Fryer, Woosley & Hartmann 1999 Ruffert & Janka 2001

67/47 Palomar 60-inch: Now a robotic telescope