Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.

Slides:



Advertisements
Similar presentations
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Advertisements

Data Mining Classification: Alternative Techniques
Data Mining Anomaly Detection
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Minqi Zhou © Tan,Steinbach, Kumar Introduction to Data Mining.
© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/ Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan,
1 BUS 297D: Data Mining Professor David Mease Lecture 8 Agenda: 1) Reminder about HW #4 (due Thursday, 10/15) 2) Lecture over Chapter 10 3) Discuss final.
Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule Stephen D. Bay 1 and Mark Schwabacher 2 1 Institute for.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Cluster Analysis? l Finding groups of objects such that the objects in a group will.
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 12 —
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Cluster Analysis: Advanced Concepts and Algorithms Figures for Chapter 9 Introduction.
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Cluster Analysis: Basic Concepts and Algorithms Figures for Chapter 8 Introduction.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Anomaly Detection Figures for Chapter 10 Introduction to Data Mining by Tan,
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 9-1 Introduction to Statistics Chapter 10 Estimation and Hypothesis.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Anomaly Detection brief review of my prospectus Ziba Rostamian CS590 – Winter 2008.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Classification: Alternative Techniques Figures for Chapter 5 Introduction to.
Anomaly Detection. Anomaly/Outlier Detection  What are anomalies/outliers? The set of data points that are considerably different than the remainder.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining: Exploring Data Figures for Chapter 3 Introduction to Data Mining by Tan, Steinbach,
Chapter 11: Inference for Distributions
Inferences About Process Quality
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Association Analysis: Advanced Concepts Figures for Chapter 7 Introduction to.
Data Mining Techniques
Anomaly Detection Introduction and Use Cases
Jeff Howbert Introduction to Machine Learning Winter Anomaly Detection Some slides taken or adapted from: “Anomaly Detection: A Tutorial” Arindam.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Anomaly Detection Presented by: Anupam Das CS 568MCC Spring 2013
Outlier Detection Using k-Nearest Neighbour Graph Ville Hautamäki, Ismo Kärkkäinen and Pasi Fränti Department of Computer Science University of Joensuu,
1 CSE 980: Data Mining Lecture 17: Density-based and Other Clustering Algorithms.
N. GagunashviliRAVEN Workshop Heidelberg Nikolai Gagunashvili (University of Akureyri, Iceland) Data mining methods in RAVEN network.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly Detection © Tan,Steinbach, Kumar Introduction to Data Mining.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
CLUSTER ANALYSIS Introduction to Clustering Major Clustering Methods.
Data Mining Anomaly/Outlier Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.
Lecture 7: Outlier Detection Introduction to Data Mining Yunming Ye Department of Computer Science Shenzhen Graduate School Harbin Institute of Technology.
1 Data Mining: Concepts and Techniques (3 rd ed.) — Chapter 12 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign.
COMP5331 Outlier Prepared by Raymond Wong Presented by Raymond Wong
Fall 2002Biostat Statistical Inference - Proportions One sample Confidence intervals Hypothesis tests Two Sample Confidence intervals Hypothesis.
Chapter 10 The t Test for Two Independent Samples
Chapter 10 The t Test for Two Independent Samples.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly/Outlier Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar.
© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/ Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan,
Chapter 20 Classification and Estimation Classification – Feature selection Good feature have four characteristics: –Discrimination. Features.
Point Pattern Analysis
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Anomaly Detection.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Cluster Analysis This lecture node is modified based on Lecture Notes for Chapter.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
Anomaly Detection Carolina Ruiz Department of Computer Science WPI Slides based on Chapter 10 of “Introduction to Data Mining” textbook by Tan, Steinbach,
1 CSE 881: Data Mining Lecture 22: Anomaly Detection.
DATA MINING and VISUALIZATION Instructor: Dr. Matthew Iklé, Adams State University Remote Instructor: Dr. Hong Liu, Embry-Riddle Aeronautical University.
Anomaly Detection Nathan Dautenhahn CS 598 Class Lecture March 3, 2011.
Ch8: Nonparametric Methods
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 12 —
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Lecture Notes for Chapter 9 Introduction to Data Mining, 2nd Edition
Data Mining Classification: Alternative Techniques
Data Mining Anomaly Detection
Outlier Discovery/Anomaly Detection
Data Mining Anomaly/Outlier Detection
Lecture 14: Anomaly Detection
Data Mining Anomaly Detection
Data Mining Anomaly/Outlier Detection
Data Mining Anomaly Detection
Presentation transcript:

Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Anomaly/Outlier Detection l What are anomalies/outliers? –The set of data points that are considerably different than the remainder of the data l Anomalies are usually rare l Called also outliers

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Anomaly/Outlier Detection l Variants of Anomaly/Outlier Detection Problems –Given a database D, find all the data points x  D with anomaly scores greater than some threshold t –Given a database D, find all the data points x  D having the top- n largest anomaly scores f(x)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Anomaly/Outlier Detection l Applications: –Credit card fraud detection, –telecommunication fraud detection, –network intrusion detection, fault detection

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Importance of Anomaly Detection Ozone Depletion History l In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels l Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations? l The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded! Sources:

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 6

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Anomaly Detection l Challenges –How many outliers are there in the data? –Method is unsupervised  Validation can be quite challenging (just like for clustering) –Finding needle in a haystack l Working assumption: –There are considerably more “normal” observations than “abnormal” observations (outliers/anomalies) in the data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Anomaly Detection Schemes l General Steps –Build a profile of the “normal” behavior  Profile can be patterns or summary statistics for the overall population –Use the “normal” profile to detect anomalies  Anomalies are observations whose characteristics differ significantly from the normal profile l Types of anomaly detection schemes –Graphical & Statistical-based –Distance-based –Model-based

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 9

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Graphical Approaches l Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D) l Limitations –Time consuming –Subjective

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Statistical Approaches l Assume a parametric model describing the distribution of the data (e.g., normal distribution) l Apply a statistical test that depends on –Data distribution –Parameter of distribution (e.g., mean, variance) –Number of expected outliers (confidence limit)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Grubbs’ Test l Detect outliers in univariate data l Assume data comes from normal distribution l Detects one outlier at a time, remove the outlier, and repeat –H 0 : There is no outlier in data –H A : There is at least one outlier l Grubbs’ test statistic: l Reject H 0 if:

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Limitations of Statistical Approaches l Most of the tests are for a single attribute l In many cases, data distribution may not be known l For high dimensional data, it may be difficult to estimate the true distribution

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Distance-based Approaches l Data is represented as a vector of features l Three major approaches –Nearest-neighbor based –Density based –Clustering based

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Nearest-Neighbor Based Approach l Approach: –Compute the distance between every pair of data points –There are various ways to define outliers:  Data points for which there are fewer than p neighboring points within a distance D  The top n data points whose distance to the kth nearest neighbor is greatest  The top n data points whose average distance to the k nearest neighbors is greatest

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Outliers in Lower Dimensional Projection l In high-dimensional space, data is sparse and notion of proximity becomes meaningless –Every point is an almost equally good outlier from the perspective of proximity-based definitions l Lower-dimensional projection methods –A point is an outlier if in some lower dimensional projection, it is present in a local region of abnormally low density

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Density-based: LOF approach l For each point, compute the density of its local neighborhood l Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors l Outliers are points with largest LOF value p 2  p 1  In the NN approach, p 2 is not considered as outlier, while LOF approach find both p 1 and p 2 as outliers

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Clustering-Based l Basic idea: –Cluster the data into groups of different density –Choose points in small cluster as candidate outliers –Compute the distance between candidate points and non-candidate clusters.  If candidate points are far from all other non-candidate points, they are outliers