Gamma-Ray Burst models Theory of prompt and afterglow emission Robert Mochkovitch (Institut d’Astrophysique de Paris) 10th Rencontres du Vietnam August.

Slides:



Advertisements
Similar presentations
The Science of Gamma-Ray Bursts: caution, extreme physics at play Bruce Gendre ARTEMIS.
Advertisements

PHASES OF SWIFT X-RAY AFTERGLOWS ( properties and theoretical interpretation ) A. Panaitescu Los Alamos National Laboratory.
In this talk I am going to describe a puzzling phenomenon we have know for about 30 years and only in the last few years we have began to understand their.
Recent Advances in our Understanding of GRB emission mechanism Pawan Kumar Outline † Constraints on radiation mechanisms ♪ High energy emission from GRBs.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.
Bruce Gendre Osservatorio di Roma / ASI Science Data Center Recent activities from the TAROT/Zadko network.
Episodic magnetic jets as the central engine of GRBs Feng Yuan With: Bing Zhang.
Can a double component outflow explain the X-ray and Optical Lightcurves of GRBs? Massimiliano De Pasquale 1 P. Evans 2, S. Oates 1, M. Page 1, S. Zane.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
Electron thermalization and emission from compact magnetized sources
NISSIM ILLICH FRAIJA This work (with collaborators Sahu et al) was accepted in PRD (arXiv: )
Reverse Shocks and Prompt Emission Mark Bandstra Astro
Global Properties of X-ray Afterglows Observed with XRT ENWEI LIANG (梁恩维) University of Guangxi, Nanning astro.gxu.edu.cn Nanjing
GRB B: Prompt Emission from Internal Forward-Reverse Shocks Yun-Wei Yu 1,2, X. Y. Wang 1, & Z. G. Dai 1 (俞云伟,王祥玉,戴子高) 1 Department of Astronomy,
GRBs and Magnetic Fields Shiho Kobayashi (小林史歩) Liverpool John Moores University.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
Gamma-Ray Burst Early Afterglows Bing Zhang Physics Department University of Nevada, Las Vegas Dec. 11, 2005, Chicago, IL.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
Great Debate on GRB Composition: A Case for Poynting Flux Dominated GRB Jets Bing Zhang Department of Physics and Astronomy University of Nevada, Las Vegas.
Gamma-Ray Bursts from Radiation-Dominated Jet? Kunihito Ioka (KEK) T. Inoue, Asano & KI, arXiv: KI, arXiv: Suwa & KI, arXiv:
GRB s CENTRAL -ENGINE & FLARes WARSAW Guido Chincarini & Raffaella margutti 1WARSAW 2009.
Radiative transfer and photospheric emission in GRB jets Indrek Vurm (Columbia University) in collaboration with Andrei M. Beloborodov (Columbia University)
Radiative processes during GRB prompt emission
GRB Prompt radiation mechanisms X-ray LC  progenitor star properties Outline † New Scenarios & Developments for Long GRBs Prompt Emission Models New developments.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
A numerical study of the afterglow emission from GRB double-sided jets Collaborators Y. F. Huang, S. W. Kong Xin Wang Department of Astronomy, Nanjing.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Photospheric emission from Structured Jet Hirotaka Ito Collaborators Shigehiro Nagataki YITP @ YITP Lunch Seminar /30 Shoichi Yamada Waseda University.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
Francisco Virgili, LJMU June 22, 2012 GRBs 2012 Liverpool C. Mundell, A. Melandri, C. Guidorzi, R. Margutti, A. Gomboc, S. Kobayashi, V. Pal’shin, etc…
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Bumps in the afterglow of GRB : An evidence for baryonic ejecta and internal shocks? Franck Genet Institut d’Astrophysique de Paris Supervisors:
The prompt phase of GRBs Dimitrios Giannios Lyman Spitzer, Jr. Fellow Princeton, Department of Astrophysical Sciences Raleigh, 3/7/2011.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Theory of prompt and afterglow emission Robert Mochkovitch (IAP) Gamma-Ray Bursts in the Multi-Messenger Era (Paris, June 2014)
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Magnetized Shocks & Prompt GRB Emission
Thermal electrons in GRB afterglows, or
Les sursauts gamma : la phase des chocs internes.
Particle acceleration and the microphysics of gamma-ray burst shocks
Gamma-ray bursts from magnetized collisionally heated jets
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Andrei M. Beloborodov Columbia University
GRBs with GLAST Tsvi Piran Racah Inst. of Jerusalem, Israel
Presentation transcript:

Gamma-Ray Burst models Theory of prompt and afterglow emission Robert Mochkovitch (Institut d’Astrophysique de Paris) 10th Rencontres du Vietnam August 3 - 9, 2014 ICISE Quy Nhon, Vietnam

central engine relativistic jet photosphere internal dissipation: prompt emission RS FS afterglow emission jet break What we know for (almost) sure….

central engine relativistic jet photosphere internal dissipation: prompt emission RS FS afterglow emission jet break Unsettled issues: acceleration/energy content of the jet: thermal/magnetic? dissipation mechanism at work? respective contributions of the forward and reverse shocks to the afterglow surprises in the early afterglow What we know for (almost) sure….

Models Basic requirements z → D L + observed flux → E ,iso = – erg short time scale variability → compact source Relativistic outflow to avoid opacity problem:  → e + e -  min  ~ 100 – 1000 Acceleration of the flow Thermal :  = r acc ~  r 0 (fireball model) T 0 ~ a few MeV r 0  10 – 100 km m : entrained mass “baryonic pollution”

Acceleration of the flow Magnetic : slower acceleration: initially → Acceleration may not be completed at the photosphere → Thermal emission can be much reduced if → Remaining magnetization at infinity ?.. (Tchekhovskoy et al, 2010) r 1/3

Dissipation processes below the photosphere: “photospheric models” np collisions shocks → energetic electrons (and positrons) reconnection IC on thermal photons at a few optical depths below the photosphere + synchrotron contribution/geometrical effect at low energy IC syn E E2N(E)E2N(E) (Vurm et al, 2011) Planck → broken PL

Dissipation processes above the photosphere: internal shocks variable Lorentz factor in the outflow  r  r 1>1>  rr dissipate 10 – 20 % of the flow KE Redistribution of the dissipated energy :  e x E diss : into a non thermal (power law) distribution of electrons  B x E diss : in magnetic energy → synchrotron emission (Daigne & Mochkovitch, 1998) 50 – 300 keV

Above the photosphere: reconnection  ∞ > 1 difficult and uncertain physics → few predictions except ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) Potentially large efficiency : 30 – 50 % ? (Zhang & Zhang, 2014)

Evaluating the models Internal shocks: many predictions in good agreement with observations : hardness – duration, W(E), Lags, HIC Potential problems efficiency requires cooling electrons in “fast cooling regime” → low energy slope  = -1.5 while obs  -1 acceleration of electrons: much energy into a small (1%) fraction of the electrons magnetic acceleration required to avoid bright photospheric emission but then what about  ∞ and the existence/efficiency of shocks ? keV 260 keV - 5 MeV >100 MeV >1 GeV Time [s] Photon flux Reconnection: natural model if magnetic acceleration with large  ∞ ? uncertainties with the spectrum: general shape, low energy spectral slope  Photospheric models: less uncertain input physics requires an “adaptable dissipative process” should work for a full range of L, E p (whole burst evolution) → Looking for tests of the various models… Photon flux GBM LAT (Bosnjak & Daigne, 2014)

Temporal tests steep decay at the end of the prompt phase “high latitude emission” tbtb  -3 tbtb RR (Hascoët et al, 2012) IS, ICMART :  t geo ~ t b →  ~ -3 Photospheric models :  t geo << t b In photopheric models the initial decay must correspond to an effective behavior of the central engine

Spectral tests additional thermal (photospheric) component in the spectra ? expected in internal shock, reconnection models… …but a priori not in photospheric models where the spectrum is the (modified) photospheric emission (Guiriec et al, 2013)

The afterglow … results from the deceleration of the flow by the external medium (uniform or stellar wind) The pre-Swift era: afterglows looked pretty simple ! Forward shock dynamics described by the Blandford-McKee solution (at deceleration radius, swept up mass: ) uniform medium stellar wind R -3/2-1/2 t -3/8-1/4 Shock dissipated energy injected into a non-thermal distribution of electrons:  e, p,   and amplifies the magnetic field:  B  Injection Lorentz factor of the electrons: m  B  m 2   Post-shock magnetic field: → (t syn ~ t dyn ) c  B  c 2 

Afterglow spectra and light curves are modelled by consecutive power-law segments multi-wavelength fit of the afterglow → E K,  e,  B, p, n/A * Hz  c < m m < c day E K = erg ; n = 0.14 cm -3  e = ;  B = ; p = 2 (Sari, Piran, Narayan, 1998) (Panaitescu & Kumar, 2000) (Panaitescu & Kumar, 2002) spectra light curves X V

Concerns: robustness of the results → constant microphysics parameters ? → uniform external medium often found; at odds with expectation for a WR progenitor The Swift era: surprises in the early afterglow plateau phase, flares, steep slopes,… t -3.2 New ingredients/paradigm needed !

“missing energy” New ingredients A late activity of the central engine ? Extended plateaus require large amounts of energy to be injected into the forward shock E 0 = erg E inj = k  E 0 with k = 2, 10, 100 E fs = E 0 + E inj → efficiency crisis for the prompt phase but Ex: f mes = 0.1 ; k = 10, 100 → f true = 0.53, 0.92 ! An initially inefficient afterglow ? Let us assume: a wind external medium  e ∝ n - (n > n crit ) and constant for n < n crit → flat plateau for ~ 1

Early deceleration by material surrounding the star  ~ 30 Duffell & Mac Fadyen, 2014 coasting phase deceleration

New paradigm Making the early afterglow with a long-lived reverse shock Standard picture: the reverse shock is short-lived; it rapidly crosses the high  ejecta, heats the electrons → slow cooling electrons radiate in optical/IR: early optical flash ( GRB ; Sari & Piran, 1999 ) Alternative proposal: ejecta has a low  tail → the reverse shock is long-lived (Genet et al, 2007; Uhm & Beloborodov, 2007) Emission from the reverse shock sensitive to the distribution of energy in the ejecta → great flexibility in light curve shapes (Uhm et al, 2012) Plateaus injected power in the tail

Conclusions Prompt emission territories: friendly hostile Terra incognita internal shockslargequite largesmall photosphericmedium Reconnectionsmall large “Model geopolitics” Afterglow Life was easy in the pre-Swift era… XRT findings: Plateau, flares, steep slopes were not expected in the standard model Several interpretations, none fully convincing How to make new progress? Expect a Rosetta stone burst: GRB A ? A new dedicated mission: SVOM (2020) The multi-messenger era neutrinos, cosmic rays, gravitational waves… → new clues on GRB physics ? (shock waves, magnetization)