Marco Stratmann EIC Advisory Committee Meeting April 10, 2011 - Newport News, VA Compelling Opportunities in Spin Physics * at an EIC 1.

Slides:



Advertisements
Similar presentations
Target Fragmentation studies at JLab M.Osipenko in collaboration with L. Trentadue and F. Ceccopieri, May 20,SIR2005, JLab, Newport News, VA CLAS Collaboration.
Advertisements

Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
Low x workshop Helsinki 2007 Joël Feltesse 1 Inclusive F 2 at low x and F L measurement at HERA Joël Feltesse Desy/Hamburg/Saclay On behalf of the H1 and.
Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
Mar. 17, 2006 Imran Younus Probing Gluon Polarization with Longitudinally Polarized p+p Collisions at  s = 200 GeV.
Erik MaddoxBEACH 2004, Chicago1 Heavy flavour production at HERA Outline: Introduction Charm production Beauty production Conclusions Erik Maddox (NIKHEF/UvA)
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Stony Brook, Dec Physics Topics Working.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
W/Z PRODUCTION AND PROPERTIES Anton Kapliy (University of Chicago) on behalf of the ATLAS collaboration PHENO-2012.
Luca Stanco - PadovaQCD at HERA, LISHEP pQCD  JETS Luca Stanco – INFN Padova LISHEP 2006 Workshop Rio de Janeiro, April 3-7, 2006 on behalf of.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
Longitudinal Spin Physics at RHIC and a Future eRHIC Brian Page Brookhaven National Laboratory CIPANP 2015 – Vail, CO.
Spin-Flavor Decomposition J. P. Chen, Jefferson Lab PVSA Workshop, April 26-27, 2007, Brookhaven National Lab  Polarized Inclusive DIS,  u/u and  d/d.
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Spin structure of the nucleon
Future Physics at JLab Andrew Puckett LANL medium energy physics internal review 12/14/
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 12th International Workshop.
NLO QCD fits to polarized DIS & SIDIS data NLO QCD fits to polarized DIS & SIDIS data Rodolfo Sassot Universidad de Buenos Aires Global Analysis Workshop,
What can we learn from η production in proton-proton collisions? Joe Seele MIT and University of Colorado.
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 10th International Workshop.
A feasibility study for measurements using electroweak probes at the proposed Electron-Ion Collider: Investigating nucleon structure and the fundamental.
Searching for Polarized Glue at Brian Page – Indiana University For the STAR Collaboration June 17, 2014 STAR.
NEW RESULTS FROM JET PHYSICS AT HERA Thomas Schörner-Sadenius Hamburg University 2 nd HERA-LHC Workshop June 2006.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
HERMES による パートン helicity 分布関数の QCD 解析 Tokyo Inst. of Tech. 1. Quantum Chromo-Dynamics (QCD) 2. Parton Helicity Distribution and Nucleon Spin Problem 3.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
SWADHIN TANEJA (STONY BROOK UNIVERSITY) K. BOYLE, A. DESHPANDE, C. GAL, DSSV COLLABORATION 2/4/2016 S. Taneja- DIS 2011 Workshop 1 Uncertainty determination.
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
Lara De Nardo DIS 2007 Measurement of the spin structure functions g 1 and g 1 at HERMES Lara De Nardo TRIUMF/DESY pd.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Marco Stratmann e-Meeting, BNL, 03/10/11 The Case for Future ep Physics at eRHIC.
Bonn, March 27 th, 2012 Helicity PDFs at an EIC a quantitative appraisal Marco Stratmann work done in collaboration with E. Aschenauer, R.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
H1 QCD analysis of inclusive cross section data DIS 2004, Štrbské Pleso, Slovakia, April 2004 Benjamin Portheault LAL Orsay On behalf of the H1 Collaboration.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
Marco Stratmann Regensburg / Wurzburg What can be done with possible He3 W-boson A L data RSC meeting, Ames, Iowa, May 14 th - 16 th,
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
1 Workshop on ‘Contribution of the Gluon Spin to the Proton Spin’ – RIKEN 05 P.Liebing / E.C. Aschenauer The challenge to extract  G/G from HERMES data.
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Unpolarized Physics Program HERA-3 Workshop, MPI, 17-Dec-2002 A. Caldwell Physics Topics: eP, eD, eA Detector Requirements Accelerator Requirements Sources:
Gluon polarization and jet production at STAR Pibero Djawotho for the STAR Collaboration Texas A&M 4 June 2013.
Luca Stanco - PadovaLow-x at HERA, Small-x Low-x AND Low Q 2 Luca Stanco – INFN Padova Small-x and Diffraction 2007 Workshop FermiLab, March 28-30,
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
6/28/20161 Future Challenges of Spin Physics Feng Yuan Lawrence Berkeley National Laboratory.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
Electroweak physics at an EIC
Measurements of ΔG Focus on COMPASS data ΔG from scaling violations
Explore the new QCD frontier: strong color fields in nuclei
Luciano Pappalardo for the collaboration
Gordon Cates, Xiaochao Zheng, Yuxiang Zhao LOI
Open Heavy Flavour Production at HERA
F2/FL with HERA III/eRHIC A. Caldwell, Max-Planck-Institut f. Physik
Spin and Flavor Structure compelling bread & butter physics at an EIC
DIS 2004 XII International Workshop
Polarized PDF (based on DSSV) Global Analysis of World Data
Spin Physics at RHIC Kieran Boyle (RBRC).
Selected Physics Topics at the Electron-Ion-Collider
NLO QCD fits to polarized semi-inclusive DIS data
Measurements of ΔG Focus on COMPASS data ΔG from scaling violations
Measurement of the spin structure functions g1 and g1 at HERMES
Y.Kitadono (Hiroshima ),
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

Marco Stratmann EIC Advisory Committee Meeting April 10, Newport News, VA Compelling Opportunities in Spin Physics * at an EIC 1

vigorous experimental programs in past 25 years (SLAC, CERN, DESY, JLAB, BNL) matched by theoretical progress (NLO, global analyses, PDF uncertainties, …) yet, we still lack a satisfactory understanding of the proton’s helicity structure: gluons appear to carry very little of the proton spin for but what is their role at small x where they are most abundant ? --> cannot compute full x-integral reliably (enters proton spin sum) --> what is the proper QCD dynamics at small x? DGLAP? what is the flavor decomposition of the polarized sea depending on x ? models predict certain patterns, e.g., for - not verified yet do we observe “helicity retention” as ? strength of JLab 12 but EIC contributes at much larger Q 2 hints for unexpectedly small strangeness polarization for --> does the small x behavior of comply with expectations from SU(3) ? --> do we observe an asymmetry in ? 2

scaling violations in DIS world’s best probe of unpol. gluon at small x (HERA) need large Q 2 range at any given x to work key prediction of pQCD theory well under control current x min = from Blumlein, Bottcher fit novel electroweak probes / DIS structure fcts. HERA measured unpol. NC/CC DIS & extracted e-w parameters never done with polarized protons; CC inaccessible if Q 2 << M W 2 (fixed target regime) flavor separation for x > 0.01; probes PDFs at medium-to-large x need to be able to reconstruct x,Q 2 from hadrons for CC events semi-inclusive DIS successfully used in fixed target regime (HERMES, COMPASS) requires particle ID in large kinematic range provides flavor separation fragmentation functions should be known well enough in

the spin of the proton is the result of a subtle interplay of quark and gluon spins and their angular momenta understanding of partonic structure of nucleons otherwise incompletespin deeply rooted in space-time symmetry mass and spin (Pauli-Lubanski operator) are the two invariants of the Poincare group need to know both helicity configurations not only their average (= unpol. PDFs) we should aim to understand this fundamental problem learn about QCD dynamics and factorization in the presence of spin 4

5

Q 2 : proton virtuality $ resolution r » 1/Q at which the proton is probed x: longitudinal momentum fraction of struck parton in the proton y: momentum fraction lost by electron in the proton rest frame recall: DIS kinematics electron 6 EIC:up to EIC stage-1: eRHIC 5x50, 5x100, …, 5x250, 5x325 small x pol. DIS lever arm for F L MEIC 11x60

 find out how low in y we can go increase x,Q 2 coverage for each S more overlap between different S larger lever-arm for Q 2 evolution at fixed x upper y cut much less critical E. Aschenauer, T. Burton  tagging of the scattered electron need to detect electrons at forward Θ=π EeEe E e’ Θ e’  QED radiative corrections known to be significant at HERA need to control them & reconstruct true x, Q 2 reliably unfolding requires iterative procedure exploit different methods to reconstruct x,Q 2 (“electron”, “Jacquet-Blondel”, “combined”) Spiesberger y 7

x current status: RHIC pp DIS & pp low x behavior unconstrained significant polarization still possible no reliable error estimate for 1 st moment (entering spin sum rule) find DSSV global fit de Florian, Sassot, MS, Vogelsang positive  g pQCD scaling violations 8

strategy to quantify impact: global QCD fits with realistic pseudo-data W 2 > 10GeV 2 current data issues: bunch-by-bunch polarimetry, relative luminosity, detector performance, … 9

how effective are scaling violations with data up to (recall x min ≈ 1.6×10 -4 ) DSSV+ includes also latest COMPASS (SI)DIS data (no impact on DSSV Δ g) χ 2 profile slims down significantly already for stage-1 (one month of running) Sassot, MS 10 with one can reach down to x ≈ 3×10 -5 (impact needs to be quantified )

what about the uncertainties on the x-shape … Sassot, MS unique feasible relevant golden measurement expect to determine at about 10% level (or better – more studies needed) 11

strangeness is one of the least known quantities in hadronic physics – both unpolarized and polarized – where significant progress is difficult w/o EIC DSSV (incl. latest COMPASS data) data s urprise: Δ s small & positive from SIDIS data but 1 st moment is negative and sizable due to “constraint” from hyperon decays (F,D) (assumed SU(3) symmetry debatable M. Savage) drives uncertainties on ΔΣ (spin sum) NNPDF collaboration substantial uncertainties known issues with HERMES data at large x hot topic: 12

at LO: extra weight for each quark actual analysis of data requires NLO QCD where x, z dependence is non-trivial allows for full flavor separation if enough hadrons are studied relevant quantities/measurements: (un)polarized SIDIS cross sections (we don’t want to study asymmetries anymore at EIC) for u, ubar, d, dbar, s, sbar separation need H = π +, π -, K +, K - (nice to have more) kinematic coverage in x,Q 2 similar to inclusive DIS complications/additional opportunities: PDF information entangled with fragmentation functions should be not a problem: already known pretty well (DSS – de Florian, Sassot, MS) more data (Belle, BaBar, RHIC, LHC, …) 13

Aschenauer, MS compute K + yields in unpol. ep at NLO with 100 NNPDF replicas z integrated to minimize FF uncertainties 5×250 GeV actual uncertainties much smaller than points one month of running PYTHIA agrees very well (despite very different hadronization model) --> confidence that we can use MC to estimate yields & generate pseudo-data 14

neutral currents ( γ, Z exchange, γZ interference) charged currents (W exchange) at high enough Q 2 electroweak probes become relevant parameterized by new structure functions which probe combinations of PDFs different from photon exchange --> flavor decomposition without SIDIS, e-w couplings hadron-spin averaged case: studied to some extent at HERA (limited statistics) hadron-spin difference: Wray; Derman; Weber, MS, Vogelsang; Anselmino, Gambino, Kalinowski; Blumlein, Kochelev; Forte, Mangano, Ridolfi; … contains e-w propagators and couplings studies by Deshpande, Kumar, Ringer, Riordan, Taneja, Vogelsang 15

in the parton model (for simplicity) NC: CC: requires a positron beam NLO QCD corrections all available flavor decomposition (no fragmentation) ; effective neutron beam highly desirable de Florian, Sassot; MS, Vogelsang, Weber; van Neerven, Zijlstra; Moch, Vermaseren, Vogt in addition, new Bj-type sum rules e.g. 16

Deshpande, Kumar, Ringer, Riordan, Taneja, Vogelsang Q 2 > 1 GeV 2 30×325 20×250HERA 17

20 × 250 GeV Q 2 > 1 GeV < y < fb -1 DSSV PDFs Cabibbo suppressed contributions neglected separate up-type and down-type PDF combinations by varying y 18

Moch, Vogt, … in 10+ years the NNLO corrections will be available (certainly needed to match precision of data !) watch out for “surprises” at small-x = deviations from DGLAP (might set in earlier than in unpol. DIS: ; showing up as tension in global fits (?)) Bartels, Ermolaev, Ryskin; Ermolaev, Greco, Troyan tag on g 1 charm - irrelevant so far (<< 1%), driven by Δ g at small x Bjorken sum rule: C Bj known to O( α s 4 ) Kodaira; Gorishny, Larin; Larin, Vermaseren; Baikov, Chetyrkin, Kühn,... but not a tool to determine α s (1% change in α s translates in 0.08% change of Bj sum ) experimental challenge: effective neutron beam ( 3 He), very precise polarimetry, … theor. motivation for precision measurement: Crewther relation non-trivial relation of two seemingly unrelated quantities Adler function D(Q 2 ) in e + e - Bj sum C Bj (Q 2 ) in DIS deviation from exact conformal symmetry 19

20

Science Deliverable Basic Measurement Uniqueness Feasibility Relevance Requirements spin structure at small x contribution of Δg, ΔΣ to spin sum rule inclusive DIS ✔ need to reach x=10 -4 large x,Q 2 coverage about 10fb -1 full flavor separation in large x,Q 2 range strangeness, s(x)-s(x) polarized sea semi-inclusive DIS ✔ very similar to DIS excellent particle ID improved FFs (Belle,LHC,…) electroweak probes of proton structure flavor separation electroweak parameters inclusive DIS at high Q 2 ✔ some unp. results from HERA 20x250 to 30x325 positron beam ? polarized 3 He beam ? plus several other compelling measurements: F L, heavy flavor contributions to DIS str. fcts., photoproduction, … 21

1.Executive Summary - MS 2.Status of Perturbative QCD Calculations - Moch 3.Unpolarized Proton Structure – HERA’s Legacy - Cooper-Sarkar 4.Unp. PDFs: Open Questions to be Addressed at an EIC – Guzzi, Nadolsky, Olness 5.Flavor Separation from Semi-Inclusive DIS – Aschenauer, MS 6.The Longitudinal Structure Function F L at an EIC – Aschenauer, Debbe, MS 7.Theor. Status of Incl. Heavy Quark Production in DIS – Alekhin, Blumlein, Moch 8.Probing Intrinsic Charm at an EIC – Guzzi, Nadolsky, Olness 9.F 2,L (charm) at an EIC – Aschenauer, Debbe, MS 10. Status of Helicity-Dependent PDFs and Open Questions – Sassot, MS 11. Opportunities in Spin Physics at an EIC – Aschenauer, Sassot, MS 12. Electroweak Str. Fcts. at the EIC – Deshpande, Kumar, Ringer, Riordan, Taneja, Vogelsang 13. Charged Current Charm Production and the Strange Sea - MS 14. Photoproduction Processes at an EIC – Spiesberger, MS 15. Expectations for Heavy Quark Photoproduction - Spiesberger 16. Expectation for Polarized Photoproducion – Jager, MS 22

EXTRAS 23

DSSV global analysis de Florian, Sassot, MS, Vogelsang well constrained total quark densities x -> 1 behavior to be determined gluon small (node?) in x-region constrained by data indications for non-trivial sea quark polarizations note: less pronounced with latest COMPASS SIDIS data surprising strangeness polarization sizable SU(3) breaking? also seen in latest COMPASS kaon data lattice: Bali et al., ; ;

so far safely ignored: << 1% to existing g 1 fixed-target data numerical relevance at the EIC depends strongly on size of Δ g need massive Wilson coefficients (charm not massless for most of EIC kinematics) so far only known to LO (NLO is work in progress Kang, MS) some expectations: (at LO) ≈ 2x10 -3 ≈ 2x10 -5 very small (1-2% of g 1 uds ) 10-15% of g 1 uds 25

 SIDIS through e-w boson exchange some studies available from “Future Physics at HERA” workshops: Maul, Contreras, Ihssen, Schafer; Contreras, De Roeck, Maul (based on PEPSI Monte Carlo) π, K TO DO: re-do for EIC kinematics  CC charm production as a probe of strangeness idea: at O(α s 0 ) at O(α s 1 ) can potentially spoil sensitivity to strangeness also, need to keep full dependence on charm mass in EIC kinematics NLO available (pol + unpol) Kretzer, MS again, studies performed for HERA gluon channel suppressed for z > 0.2 in D meson production Δs < 0 errors assume 500pb -1 TO DO: exhume codes & re-do for EIC Δs ≈ 0 26