Section 6.1 Volumes By Slicing and Rotation About an Axis

Slides:



Advertisements
Similar presentations
Volumes by Slicing: Disks and Washers
Advertisements

Volume by Parallel Cross Section; Disks and Washers
Applications of Integration 6. Volumes Volumes In trying to find the volume of a solid we face the same type of problem as in finding areas. We.
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
The Disk Method (7.2) April 17th, I. The Disk Method Def. If a region in the coordinate plane is revolved about a line, called the axis of revolution,
APPLICATIONS OF INTEGRATION Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of.
Section 6.2: Volumes Practice HW from Stewart Textbook (not to hand in) p. 457 # 1-13 odd.
Applications of Integration
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
APPLICATIONS OF INTEGRATION
Section 5.2 Volumes. DEFINITION OF VOLUME USING VERTICAL SLICES Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in.
7.1 Area Between 2 Curves Objective: To calculate the area between 2 curves. Type 1: The top to bottom curve does not change. a b f(x) g(x) *Vertical.
Applications of Integration
Volume: The Disk Method
TOPIC APPLICATIONS VOLUME BY INTEGRATION. define what a solid of revolution is decide which method will best determine the volume of the solid apply the.
Chapter 6 – Applications of Integration
Section 6.2.  Solids of Revolution – if a region in the plane is revolved about a line “line-axis of revolution”  Simplest Solid – right circular cylinder.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
10 Applications of Definite Integrals Case Study
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Volumes by Cylindrical Shells
7.2 Volumes APPLICATIONS OF INTEGRATION In this section, we will learn about: Using integration to find out the volume of a solid.
Area Between Two Curves
Area Between Two Curves
Do Now: #10 on p.391 Cross section width: Cross section area: Volume:
Chapter 6 Applications of Integration 机动 目录 上页 下页 返回 结束 6.1 Area Between Curves 6.2 Volume 6.3 Volume by Cylindrical Shell 6.5 Average Value of a Function.
Section 7.3 – Volume: Shell Method. White Board Challenge Calculate the volume of the solid obtained by rotating the region bounded by y = x 2, x=0, and.
6.3 Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of cylindrical shells to find out.
Section 7.2a Area between curves.
Application of integration. G.K. BHARAD INSTITUTE OF ENGINEERING Prepared by :- (1) Shingala nital (2) Paghdal Radhika (3) Bopaliya Mamata.
Chapter 7. Applications of the Definite integral in Geometry, Science, and Engineering By Jiwoo Lee Edited by Wonhee Lee.
Volume Section 7.3a. Recall a problem we did way back in Section 5.1… Estimate the volume of a solid sphere of radius 4. Each slice can be approximated.
Applications of Integration In this chapter we explore some of the applications of the definite integral by using it for 1.Computing the area between curves.
7.4 Length of a Plane Curve y=f(x) is a smooth curve on [a, b] if f ’ is continuous on [a, b].
ESSENTIAL CALCULUS CH07 Applications of integration.
Volume: The Disk Method
Volumes of Solids Solids of Revolution Approximating Volumes
Solids of Revolution Disk Method
VOLUME BY DISK or disc BY: Nicole Cavalier & Alex Nuss.
Volume: The Disc Method
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes By Cylindrical Shells Objective: To develop another method to find volume without known cross-sections.
Volumes Using Cross-Sections Solids of Revolution Solids Solids not generated by Revolution Examples: Classify the solids.
Volumes Lesson 6.2.
Volume: The Shell Method
VOLUMES.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Lecture 1 – Volumes Area – the entire 2-D region was sliced into strips Before width(  x) was introduced, only dealing with length ab f(x) Volume – same.
Chapter Area between Two Curves 7.2 Volumes by Slicing; Disks and Washers 7.3 Volumes by Cylindrical Shells 7.4 Length of a Plane Curve 7.5 Area.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
5.2 Volumes of Revolution: Disk and Washer Methods 1 We learned how to find the area under a curve. Now, given a curve, we form a 3-dimensional object:
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
Volumes of Solids of Rotation: The Disc Method
The region enclosed by the x-axis and the parabola is revolved about the line x = –1 to generate the shape of a cake. What is the volume of the cake? DO.
Copyright © Cengage Learning. All rights reserved.
Volume: The Shell Method
Solids of Revolution Shell Method
Solids of Revolution Shell Method
Copyright © Cengage Learning. All rights reserved.
In this section, we will learn about: Using integration to find out
6.1 Areas Between Curves To find the area:
Presentation transcript:

Section 6.1 Volumes By Slicing and Rotation About an Axis

Generalized Cylinder A cylinder is a solid that is generated when a plane region is translated along a line or axis that is perpendicular to the region. If a cylindrical solid is generated y translating a region of area A through a distant h, then h is called the height of the cylinder, and the volume V of the cylinder is defined to be V=Ah =[area of a cross section] X [height]

Volumes By Slicing To solve this problem, we begin by dividing the interval [a, b] into n subintervals, thereby dividing the solid into n slabs. If we assume that the width of the kth subinterval is xk, then the volume of the kth slab can be approximated by the volume A(xk)xk of a right cylinder of width (height) xk and cross-sectional area A(xk), where xk is a point in the kth subinterval. Adding these approximations yields the following Riemann sum that approximates the volume V: Taking the limit as n increases and the width of the subintervals approach zero yields the definite integral

Volume Formula The Volume of a solid can be obtained by integrating the cross-sectional area from one end of the solid to the other.

How to Calculate the Volume To apply the formula in the definition to calculate the volume of a solid, take the following steps:

Example A pyramid 3m high has a square base that is 3 m on a side. The cross section of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on a side. Find the volume of the pyramid.

Solids of Revolution: The Disk Method

Examples Example: The region between the curve , 0  x 4, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.

Example Example: Find the volume of the solid generated by revolving the region bounded by and the lines y=1, x=4 about the line y=1.

To find the volume of a solid generated by revolving a region between the y-axis and a curve x=R(y), c  y d, about the y-axis, we use the same method with x replaced by y. In this case, the circular cross-section is A(y)= [radius]2 = [R(y)]2

Example Example: Find the volume of the solid generated by revolving the region between the y-axis and the curve x=2/y, 1  y 4, about the y-axis.

Example Example: Find the volume of the solid generated by revolving the region between the parabola x=y2+1 and the line x=3 about the line x=3.

Solids of Revolution: The Washer Method

Example: The region bounded by the curve y=x2+1 and the line y=-x+3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Example Example: The region bounded by the parabola y=x2 and the line y=2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

Section 6.2 Volumes by Cylindrical Shells The method of slicing in section 6.1 is sometimes awkward to apply. To overcome This difficulty, we use the same integral definition for volume, but obtain the area by slicing through the solid in a different way.

Volume of Cylindrical Shells A cylindrical shell is a solid enclosed by two concentric right circular cylinders. The volume V of a cylindrical shell with inner radius r1, outer radius r2, and height h can be written as V=2 [1/2(r1+r2) ] h (r2-r1) So V=2 [ average radius ] [height] [thickness]

Method of Cylindrical Shells The idea is to divide the interval [a, b] into n subintervals, thereby subdividing the region R into n strips, R1, R2,, …, Rn. When the region R is revolved about the y-axis, these strips generate “tube-like” solids S1, S2, …, Sn that are nested one inside the other and together comprise the entire solid S. Thus the volume V of the solid can be obtained by adding together the volumes of the tubes; that is V=V(S1)+V(S2)+…+V(Sn).

Method of Cylindrical Shells

Method of Cylindrical Shells Suppose that the kth strip extends from xk-1 to xk and that the width of the strip is xk. If we let xk* be the midpoint of the interval [xk-1, xk], and if we construct a rectangle of height f(xk*) over the interval, then revolving this rectangle about the y-axis produces a cylindrical shell of average radius xk*, height f(xk*), and thickness xk. Then the volume Vk of this cylindrical shell is Vk=2xk*f(xk*) xk Hence, we have

Volume by Cylindrical Shells about the y-axis Let f be continuous and nonnegative on [a, b] (0a<b), and let R be the region that is bounded above by y=f(x), below by the x-axis, and on the sides by the lines x=a and x=b. Then the volume V of the solid of revolution that is generated by revolving the region R about the y-axis is given by Generally

Summary

Example Example: The region bounded by the curve , the x-axis, and the line x=4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Example So far, we have used vertical axes of revolution. For horizontal axes, we replace the x’s with y’s. Example: The region bounded by the curve , the x-axis, and the line x=4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell method.

Examples Example. Use cylindrical shells to find the volume of the solid generated when the region enclosed between , and the x-axis is revolved about the y-axis. Solution:

Arc Length Formula for Parametric Curves 6.3 Length of a Plane Curve Arc Length Formula for Parametric Curves

Example: Find the circumference of a circle of radius 2 from the parametric equations Solution:

Example Example: Find the length of the astroid.

y=f(x) is a smooth curve on [a, b] if f ’ is continuous on [a, b].

Where convenient, (3) can also be expressed as

Example Find the arc length of the curve from (1, 1) to Solution:

Dealing with Discontinuities in dy/dx At a point on a curve where dy/dx fails to exist, dx/dy may exist and we may be able to Find the curve’s length by expressing x as a function of y and applying the following:

Example Example: Find the length of the curve y=(x/2)2/3 from x=0 to x=2.