Applications of Integration

Slides:



Advertisements
Similar presentations
Volumes by Cylindrical Shells r. Integration/First Applications of Integration/Volumes by Cylindrical Shells by M. Seppälä Cylindrical Shells The method.
Advertisements

7.2: Volumes by Slicing Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 Little Rock Central High School, Little Rock,
Volumes by Slicing: Disks and Washers
Applications of Integration 6. Volumes Volumes In trying to find the volume of a solid we face the same type of problem as in finding areas. We.
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
APPLICATIONS OF INTEGRATION Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of.
Section 6.2: Volumes Practice HW from Stewart Textbook (not to hand in) p. 457 # 1-13 odd.
Applications of Integration
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
APPLICATIONS OF INTEGRATION Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of.
The Shell Method Volumes by Cylindrical Shells By Christine Li, Per. 4.
Section 6.1 Volumes By Slicing and Rotation About an Axis
APPLICATIONS OF INTEGRATION
Volume: The Disk Method
Chapter 6 – Applications of Integration
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
10 Applications of Definite Integrals Case Study
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
Volume: The Shell Method Lesson 7.3. Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Volumes by Cylindrical Shells
7.2 Volumes APPLICATIONS OF INTEGRATION In this section, we will learn about: Using integration to find out the volume of a solid.
Chapter 6 Applications of Integration 机动 目录 上页 下页 返回 结束 6.1 Area Between Curves 6.2 Volume 6.3 Volume by Cylindrical Shell 6.5 Average Value of a Function.
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
Section 7.3 – Volume: Shell Method. White Board Challenge Calculate the volume of the solid obtained by rotating the region bounded by y = x 2, x=0, and.
6.3 Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of cylindrical shells to find out.
Chapter 6 – Applications of Integration 6.3 Volumes by Cylindrical Shells 1Erickson.
Copyright © Cengage Learning. All rights reserved. 8 Further Applications of Integration.
Applications of Integration In this chapter we explore some of the applications of the definite integral by using it for 1.Computing the area between curves.
More on Volumes & Average Function Value Chapter 6.5 March 1, 2007.
Volume: The Disk Method
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes By Cylindrical Shells Objective: To develop another method to find volume without known cross-sections.
6.3 – Volumes of Cylindrical Shells. Derivation Assume you have a functions similar to the one shown below and assume the f is to difficult to solve for.
Volumes Lesson 6.2.
Volume: The Shell Method
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Chapter Area between Two Curves 7.2 Volumes by Slicing; Disks and Washers 7.3 Volumes by Cylindrical Shells 7.4 Length of a Plane Curve 7.5 Area.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
Volumes by Cylindrical Shells. What is the volume of and y=0 revolved around about the y-axis ? - since its revolving about the y-axis, the equation needs.
Calculus April 13Volume: the Shell Method. Instead of cutting a cylinder into disks (think of cutting an onion into slices), we will look at layers of.
Copyright © Cengage Learning. All rights reserved. 8.2 Area of a Surface of Revolution.
Copyright © Cengage Learning. All rights reserved. 5.2 Volumes
Volume: The Shell Method 7.3 Copyright © Cengage Learning. All rights reserved.
5.2 Volumes of Revolution: Disk and Washer Methods 1 We learned how to find the area under a curve. Now, given a curve, we form a 3-dimensional object:
Calculus April 11Volume: the Disk Method. Find the volume of the solid formed by revolving the region bounded by the graph of and the x-axis (0 < x
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
The region enclosed by the x-axis and the parabola is revolved about the line x = –1 to generate the shape of a cake. What is the volume of the cake? DO.
Copyright © Cengage Learning. All rights reserved.
Volume: The Shell Method
Solids of Revolution Shell Method
Solids of Revolution Shell Method
Copyright © Cengage Learning. All rights reserved.
In this section, we will learn about: Using integration to find out
Copyright © Cengage Learning. All rights reserved.
APPLICATIONS OF INTEGRATION
Applications Of The Definite Integral
7 Applications of Integration
Section 7.3 Calculus AP/Dual, Revised ©2016
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
6.1 Areas Between Curves To find the area:
Applications of Integration
7 Applications of Integration
Presentation transcript:

Applications of Integration 6

6.3 Volumes by Cylindrical Shells

Volumes by Cylindrical Shells Let’s consider the problem of finding the volume of the solid obtained by rotating about the y-axis the region bounded by y = 2x2 – x3 and y = 0. (See Figure 1.) If we slice perpendicular to the y-axis, we get a washer. Figure 1

Volumes by Cylindrical Shells But to compute the inner radius and the outer radius of the washer, we’d have to solve the cubic equation y = 2x2 – x3 for x in terms of y; that’s not easy. Fortunately, there is a method, called the method of cylindrical shells, that is easier to use in such a case. Figure 2 shows a cylindrical shell with inner radius r1, outer radius r2, and height h. Figure 2

Volumes by Cylindrical Shells Its volume V is calculated by subtracting the volume V1 of the inner cylinder from the volume V2 of the outer cylinder: V = V2 – V1 = r22h – r12h = (r22 – r12)h = (r2 + r1) (r2 – r1)h = 2 h(r2 – r1)

Volumes by Cylindrical Shells If we let r = r2 – r1 (the thickness of the shell) and r = (r2 + r1) (the average radius of the shell), then this formula for the volume of a cylindrical shell becomes and it can be remembered as V = [circumference] [height] [thickness]

Volumes by Cylindrical Shells Now let S be the solid obtained by rotating about the y-axis the region bounded by y = f (x) [where f (x)  0], y = 0, x = a and x = b, where b > a  0. (See Figure 3.) We divide the interval [a, b] into n subintervals [xi – 1, xi] of equal width x and let be the midpoint of the i th subinterval. Figure 3

Volumes by Cylindrical Shells If the rectangle with base [x i – 1, xi] and height is rotated about the y-axis, then the result is a cylindrical shell with average radius , height , and thickness x (see Figure 4), so by Formula 1 its volume is Figure 4

Volumes by Cylindrical Shells Therefore an approximation to the volume V of S is given by the sum of the volumes of these shells: This approximation appears to become better as n  . But, from the definition of an integral, we know that

Volumes by Cylindrical Shells Thus the following appears plausible:

Volumes by Cylindrical Shells The best way to remember Formula 2 is to think of a typical shell, cut and flattened as in Figure 5, with radius x, circumference 2x, height f (x), and thickness x or dx: This type of reasoning will be helpful in other situations, such as when we rotate about lines other than the y-axis. Figure 5

Example 1 – Using the Shell Method Find the volume of the solid obtained by rotating about the y-axis the region bounded by y = 2x2 – x3 and y = 0. Solution: From the sketch in Figure 6 we see that a typical shell has radius x, circumference 2x, and height f (x) = 2x2 – x3. Figure 6

Example 1 – Solution So, by the shell method, the volume is cont’d So, by the shell method, the volume is It can be verified that the shell method gives the same answer as slicing.