Chapter 6 – Applications of Integration

Slides:



Advertisements
Similar presentations
Volumes by Slicing: Disks and Washers
Advertisements

Disk and Washer Methods
Applications of Integration 6. Volumes Volumes In trying to find the volume of a solid we face the same type of problem as in finding areas. We.
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
VOLUMES Volume = Area of the base X height. VOLUMES.
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Solids of Revolution Washer Method
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
The Disk Method (7.2) April 17th, I. The Disk Method Def. If a region in the coordinate plane is revolved about a line, called the axis of revolution,
Applications of Integration
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
Section 6.1 Volumes By Slicing and Rotation About an Axis
APPLICATIONS OF INTEGRATION
Section 5.2 Volumes. DEFINITION OF VOLUME USING VERTICAL SLICES Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in.
7.1 Area Between 2 Curves Objective: To calculate the area between 2 curves. Type 1: The top to bottom curve does not change. a b f(x) g(x) *Vertical.
Applications of Integration
Volume: The Disk Method
Section 6.2.  Solids of Revolution – if a region in the plane is revolved about a line “line-axis of revolution”  Simplest Solid – right circular cylinder.
S OLIDS OF R EVOLUTION 4-G. Disk method Find Volume – Disk Method Revolve about a horizontal axis Slice perpendicular to axis – slices vertical Integrate.
7.2: Volumes by Slicing – Day 2 - Washers Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 Little Rock Central High School,
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
6.2C Volumes by Slicing with Known Cross-Sections.
Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, B Volumes by the Washer Method Limerick Nuclear Generating Station,
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Volumes by Cylindrical Shells
7.2 Volumes APPLICATIONS OF INTEGRATION In this section, we will learn about: Using integration to find out the volume of a solid.
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
6.3 Volumes by Cylindrical Shells APPLICATIONS OF INTEGRATION In this section, we will learn: How to apply the method of cylindrical shells to find out.
Chapter 6 – Applications of Integration 6.3 Volumes by Cylindrical Shells 1Erickson.
Application of integration. G.K. BHARAD INSTITUTE OF ENGINEERING Prepared by :- (1) Shingala nital (2) Paghdal Radhika (3) Bopaliya Mamata.
Finding Volumes Disk/Washer/Shell Chapter 6.2 & 6.3 February 27, 2007.
Volume: The Disk Method
Solids of Revolution Disk Method
Volume: The Disc Method
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Finding Volumes Chapter 6.2 February 22, In General: Vertical Cut:Horizontal Cut:
Volumes Lesson 6.2.
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
VOLUMES.
Finding Volumes. In General: Vertical Cut:Horizontal Cut:
Aim: Shell Method for Finding Volume Course: Calculus Do Now: Aim: How do we find volume using the Shell Method? Find the volume of the solid that results.
6.3 Volumes of Revolution Tues Dec 15 Do Now Find the volume of the solid whose base is the region enclosed by y = x^2 and y = 3, and whose cross sections.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Chapter Area between Two Curves 7.2 Volumes by Slicing; Disks and Washers 7.3 Volumes by Cylindrical Shells 7.4 Length of a Plane Curve 7.5 Area.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
7.2 Volume: The Disc Method The area under a curve is the summation of an infinite number of rectangles. If we take this rectangle and revolve it about.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is.
Copyright © Cengage Learning. All rights reserved. 5.2 Volumes
Calculus April 11Volume: the Disk Method. Find the volume of the solid formed by revolving the region bounded by the graph of and the x-axis (0 < x
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
Calculus 6-R Unit 6 Applications of Integration Review Problems.
Sec 6.2: VOLUMES Volume = Area of the base X height.
Volumes of Solids of Rotation: The Disc Method
The Disk Method (7.2) February 14th, 2017.
In this section, we will learn about: Using integration to find out
Section 6.2 ∆ Volumes Solids of Revolution Two types: Disks Washers.
3 Find the volume of the pyramid:
Review: Area betweens two curves
6.2 Volumes If a region in the plane is revolved about a line, the resulting solid is called a solid of revolution, the line is called the axis of revolution.
Warmup 1) 2) 3).
Volume - The Disk Method
8.3 Day One: Volumes by Slicing
6.1 Areas Between Curves To find the area:
Presentation transcript:

Chapter 6 – Applications of Integration 6.2 Volumes 6.2 Volumes Erickson

Solids of Revolution Solids generated by revolving plane regions around the axes are called solids of revolution. Examples: billiard balls, threaded spools etc. We can find their volume by using geometry but here we are going to learn how to use calculus to find the volume. 6.2 Volumes Erickson

Volumes of Solids In this section we will learn how to find volumes of solids by using integration. Here again we will work with areas. Think for a second, how do we find the volume of a solid? Ex. the volume of a cylinder is: V=πr2h In other words it is the area of the base times the height. 6.2 Volumes Erickson

where A is the area of the base. Volumes of Solids The same is true for other cylinder solids: Examples In each case the volume would be V=Ah where A is the area of the base. 6.2 Volumes Erickson

Volumes of Solids If we can set things up so that the axis of revolution is the x- axis and the region is the region of the plane between the x-axis and the graph of a continuous function y = A(x) a ≤ x ≤ b, we can calculate the volume of the solids by approximation. We can partition the solid in n vertical rectangles and find the area of each. The sum of those areas will give us an approximation of the volume. 6.2 Volumes Erickson

Definition of Volume (Vertical Slices) Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the volume of S is 6.2 Volumes Erickson

Definition of Volume (Horizontal Slices) Let S be a solid that lies between y = c and y = d. If the cross-sectional area of S in the plane Py, through x and perpendicular to the y-axis, is A(y), where A is a continuous function, then the volume of S is 6.2 Volumes Erickson

Volumes of Solids When we use the volume formula, it is important to remember that A(x) is the area of a moving cross-section obtained by slicing through x perpendicular to the x-axis. Similarly, when we use the volume formula, it is important to remember that A(y) is the area of a moving cross-section obtained by slicing through y perpendicular to the y-axis. 6.2 Volumes Erickson

Find the Volume of the Pyramid 6.2 Volumes Erickson

Find the Volume of the Pyramid: 4 Consider a horizontal slice through the pyramid. The volume of the slice is s2dh. If we put zero at the top of the pyramid and make down the positive direction, then s=h. h This correlates with the formula where B is the area of the base: s dh 6.2 Volumes Erickson

Method of Slicing 1 Sketch the solid and a typical cross section. Find a formula for V(x). (Note that I used V(x) instead of A(x).) 2 3 Find the limits of integration. 4 Integrate V(x) to find volume. 6.2 Volumes Erickson

Some Useful Areas - Disk If the cross-section is a disk, we find the radius of the disk (in terms of x or y) and use A = π (radius)2 6.2 Volumes Erickson

Volume of a Disk If the solid consists of adjacent vertical disks between x = a and x = b, we find the radius R(x) of the disk at x, and the volume is If the solid consists of adjacent horizontal disks between y = c and x = d, we find the radius R(y) of the disk at y, and the volume is 6.2 Volumes Erickson

Example 1: Volume by Disk Find the volume of a solid obtained by rotating about the x-axis the region under the curve from 0 to 2. 6.2 Volumes Erickson

Example 2: Volume by Disk Find the volume of the solid obtained by rotating the region bounded by the curve and the lines x=0 and x=2. 6.2 Volumes Erickson

Some Useful Areas - Washers If the cross-section is a washer, we find the inner radius and the outer radius of the washer (in terms of x or y) and use A = π (outer radius)2 − π (inner radius)2 6.2 Volumes Erickson

Volume of a Washer where R is the outside radius, r is the inside radius, and h is the height. 6.2 Volumes Erickson

Volume of a Washer If the solid consists of adjacent vertical washers between x = a and x = b, we find the outside radius R(x) and inside radius r(x) of the washer at x, and the volume is If the solid consists of adjacent horizontal washers between y = c and x = d, we find the outside radius R(y) and inside radius r(y) of the disk at y, and the volume is 6.2 Volumes Erickson

Examples: Volume by Washer (1) The region bounded by and is revolved about the y-axis. Find the volume. If we use a horizontal slice: The “disk” now has a hole in it, making it a “washer”. Because we are rotating around the y-axis, we need to solve our equations for x. The volume of the washer is: outer radius inner radius 6.2 Volumes Erickson

Examples: Volume by Washer (1) 6.2 Volumes Erickson

Examples: Volume by Washer (2) The outer radius is: r The inner radius is: R 6.2 Volumes Erickson

Examples: Volume by Washer (2) 6.2 Volumes Erickson

Examples – pg. 438 Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer. 6.2 Volumes Erickson