Pipelining I (1) Fall 2005 Lecture 18: Pipelining I.

Slides:



Advertisements
Similar presentations
PipelineCSCE430/830 Pipeline: Introduction CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Prof. Yifeng Zhu, U of Maine Fall,
Advertisements

OMSE 510: Computing Foundations 4: The CPU!
Chapter 8. Pipelining.
Review: Pipelining. Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer.
Pipelining Hwanmo Sung CS147 Presentation Professor Sin-Min Lee.
EECS 318 CAD Computer Aided Design LECTURE 2: DSP Architectures Instructor: Francis G. Wolff Case Western Reserve University This presentation.
Goal: Describe Pipelining
Computer Architecture
CS252/Patterson Lec 1.1 1/17/01 Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer.
Chapter Six 1.
CS61C L24 Review Pipeline © UC Regents 1 CS61C - Machine Structures Lecture 24 - Review Pipelined Execution November 29, 2000 David Patterson
CS Computer Architecture 1 CS 430 – Computer Architecture Pipelined Execution - Review William J. Taffe using slides of David Patterson.
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 28 – CPU Design : Pipelining to Improve Performance The College Board.
CS61C L29 CPU Design : Pipelining to Improve Performance (1) Garcia, Spring 2007 © UCB Wirelessly recharge batt  Powercast & Philips have developed a.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania Computer Organization Pipelined Processor Design 1.
Pipelining Andreas Klappenecker CPSC321 Computer Architecture.
CS61C L28 CPU Design : Pipelining to Improve Performance I (1) Garcia, Fall 2006 © UCB 100 Msites!  Sometimes it’s nice to stop and reflect. The web was.
Cs 61C L25 pipeline.1 Patterson Spring 99 ©UCB CS61C Introduction to Pipelining Lecture 25 April 28, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)
Computer ArchitectureFall 2007 © October 22nd, 2007 Majd F. Sakr CS-447– Computer Architecture.
1 השעון Hertz=1/sec מחשב פנטיום במהירות של פירושו שהוא מבצע 8^10 *2 מחזורי שעון בשניה. כל מחזור שעון לוקח 200MHZ 5*10^-9=5nanosecond כמה לוקחת פקודה בימינו?
CS61C L21 Pipeline © UC Regents 1 CS61C - Machine Structures Lecture 21 - Introduction to Pipelined Execution November 15, 2000 David Patterson
Pipelining Datapath Adapted from the lecture notes of Dr. John Kubiatowicz (UC Berkeley) and Hank Walker (TAMU)
CS430 – Computer Architecture Introduction to Pipelined Execution
1 COMP 206: Computer Architecture and Implementation Montek Singh Mon., Sep 9, 2002 Topic: Pipelining Basics.
CS61C L21 Pipelining I (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #21 – Pipelining.
1 Atanasoff–Berry Computer, built by Professor John Vincent Atanasoff and grad student Clifford Berry in the basement of the physics building at Iowa State.
Scott Beamer, Instructor
CS 61C L30 Introduction to Pipelined Execution (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L18 Pipelining I (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #18: Pipelining
Computer ArchitectureFall 2008 © October 6th, 2008 Majd F. Sakr CS-447– Computer Architecture.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE Computer Organization Lecture 17 - Pipelined.
CS61C L19 Introduction to Pipelined Execution (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Introduction to Pipelining Rabi Mahapatra Adapted from the lecture notes of Dr. John Kubiatowicz (UC Berkeley)
9.2 Pipelining Suppose we want to perform the combined multiply and add operations with a stream of numbers: A i * B i + C i for i =1,2,3,…,7.
CS1104: Computer Organisation School of Computing National University of Singapore.
Integrated Circuits Costs
B 0000 Pipelining ENGR xD52 Eric VanWyk Fall
EEL5708 Lotzi Bölöni EEL 5708 High Performance Computer Architecture Pipelining.
Analogy: Gotta Do Laundry
1 Designing a Pipelined Processor In this Chapter, we will study 1. Pipelined datapath 2. Pipelined control 3. Data Hazards 4. Forwarding 5. Branch Hazards.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
ECE 232 L18.Pipeline.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 18 Pipelining.

Cs 152 L1 3.1 DAP Fa97,  U.CB Pipelining Lessons °Pipelining doesn’t help latency of single task, it helps throughput of entire workload °Multiple tasks.
CSIE30300 Computer Architecture Unit 04: Basic MIPS Pipelining Hsin-Chou Chi [Adapted from material by and
CS 61C L5.2.2 Pipelining I (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture Pipelining I Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
Pipelining Example Laundry Example: Three Stages
Pipelining CS365 Lecture 9. D. Barbara Pipeline CS465 2 Outline  Today’s topic  Pipelining is an implementation technique in which multiple instructions.
CS252/Patterson Lec 1.1 1/17/01 معماري کامپيوتر - درس نهم pipeline برگرفته از درس : Prof. David A. Patterson.
CDA 3101 Summer 2003 Introduction to Computer Organization Pipeline Control And Pipeline Hazards 17 July 2003.
Lecture 9. MIPS Processor Design – Pipelined Processor Design #1 Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System.
CMSC 611: Advanced Computer Architecture Pipelining Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
Advanced Computer Architecture CS 704 Advanced Computer Architecture Lecture 10 Computer Hardware Design (Pipeline Datapath and Control Design) Prof. Dr.
Lecture 18: Pipelining I.
Pipelines An overview of pipelining
Review: Instruction Set Evolution
CDA 3101 Spring 2016 Introduction to Computer Organization
Pipelining concepts, datapath and hazards
CMSC 611: Advanced Computer Architecture
ECE232: Hardware Organization and Design
Chapter 3: Pipelining 순천향대학교 컴퓨터학부 이 상 정 Adapted from
Chapter 4 The Processor Part 2
Lecturer: Alan Christopher
An Introduction to pipelining
Chapter 8. Pipelining.
Pipelining Appendix A and Chapter 3.
A relevant question Assuming you’ve got: One washer (takes 30 minutes)
Recall: Performance Evaluation
Presentation transcript:

Pipelining I (1) Fall 2005 Lecture 18: Pipelining I

Pipelining I (2) Fall 2005 Laundry Pipeling Example °Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, fold, and put away ABCD °Dryer takes 30 minutes °“Folder” takes 30 minutes °“Stasher” takes 30 minutes to put clothes into drawers °Washer takes 30 minutes

Pipelining I (3) Fall 2005 Sequential Laundry Sequential laundry takes 8 hours for 4 loads TaskOrderTaskOrder B C D A 30 Time 30 6 PM AM

Pipelining I (4) Fall 2005 Pipelined Laundry Pipelined laundry takes 3.5 hours for 4 loads! TaskOrderTaskOrder B C D A 12 2 AM 6 PM Time 30

Pipelining I (5) Fall 2005 General Definitions Latency: time to completely execute a certain task for example, time to read a sector from disk is disk access time or disk latency Throughput: amount of work that can be done over a period of time

Pipelining I (6) Fall 2005 Pipelining Lessons (1/2) Pipelining doesn’t help latency of single task, it helps throughput of entire workload Multiple tasks operating simultaneously using different resources Potential speedup = Number pipe stages Time to “fill” pipeline and time to “drain” it reduces speedup: 2.3X v. 4X in this example 6 PM 789 Time B C D A 30 TaskOrderTaskOrder

Pipelining I (7) Fall 2005 Pipelining Lessons (2/2) Suppose new Washer takes 20 minutes, new Stasher takes 20 minutes. How much faster is pipeline? Pipeline rate limited by slowest pipeline stage Unbalanced lengths of pipe stages also reduces speedup 6 PM 789 Time B C D A 30 TaskOrderTaskOrder

Pipelining I (8) Fall 2005 Steps in Executing MIPS 1) IFetch: Fetch Instruction, Increment PC 2) Decode Instruction, Read Registers 3) Execute: Mem-ref:Calculate Address Arith-log: Perform Operation 4) Memory: Load:Read Data from Memory Store:Write Data to Memory 5) Write Back: Write Data to Register

Pipelining I (9) Fall 2005 Pipelined Execution Representation Every instruction must take same number of steps, also called pipeline “stages”, so some will go idle sometimes IFtchDcdExecMemWB IFtchDcdExecMemWB IFtchDcdExecMemWB IFtchDcdExecMemWB IFtchDcdExecMemWB IFtchDcdExecMemWB Time

Pipelining I (10) Fall 2005 Review: Datapath for MIPS Use datapath figure to represent pipeline IFtchDcdExecMemWB ALU I$ Reg D$Reg PC instruction memory +4 rt rs rd registers ALU Data memory imm 1. Instruction Fetch 2. Decode/ Register Read 3. Execute4. Memory 5. Write Back

Pipelining I (11) Fall 2005 Graphical Pipeline Representation I n s t r. O r d e r Load Add Store Sub Or I$ Time (clock cycles) I$ ALU Reg I$ D$ ALU Reg D$ Reg I$ D$ Reg ALU Reg D$ Reg D$ ALU (In Reg, right half highlight read, left half write) Reg I$

Pipelining I (12) Fall 2005 Example Suppose 2 ns for memory access, 2 ns for ALU operation, and 1 ns for register file read or write; compute instr rate Nonpipelined Execution: lw : IF + Read Reg + ALU + Memory + Write Reg = = 8 ns add: IF + Read Reg + ALU + Write Reg = = 6 ns Pipelined Execution: Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns

Pipelining I (13) Fall 2005 Pipeline Hazard: Matching socks in later load A depends on D; stall since folder tied up TaskOrderTaskOrder B C D A E F bubble 12 2 AM 6 PM Time 30

Pipelining I (14) Fall 2005 Limits to pipelining Hazards prevent next instruction from executing during its designated clock cycle Structural hazards: HW cannot support this combination of instructions (single person to fold and put clothes away) Control hazards: Pipelining of branches & other instructions stall the pipeline until the hazard; “bubbles” in the pipeline Data hazards: Instruction depends on result of prior instruction still in the pipeline (missing sock)

Pipelining I (15) Fall 2005 Structural Hazard #1: Single Memory (1/2) Read same memory twice in same clock cycle I$ Load Instr 1 Instr 2 Instr 3 Instr 4 ALU I$ Reg D$Reg ALU I$ Reg D$Reg ALU I$ Reg D$Reg ALU Reg D$Reg ALU I$ Reg D$Reg I n s t r. O r d e r Time (clock cycles)

Pipelining I (16) Fall 2005 Structural Hazard #1: Single Memory (2/2) Solution: infeasible and inefficient to create second memory so handle this by having two Level 1 Caches (a temporary smaller [of usually most recently used] copy of memory) have both an L1 Instruction Cache and an L1 Data Cache need more complex hardware to control when both caches miss

Pipelining I (17) Fall 2005 Structural Hazard #2: Registers (1/2) Can’t read and write to registers simultaneously I$ sw Instr 1 Instr 2 Instr 3 Instr 4 ALU I$ Reg D$Reg ALU I$ Reg D$Reg ALU I$ Reg D$Reg ALU Reg D$Reg ALU I$ Reg D$Reg I n s t r. O r d e r Time (clock cycles)

Pipelining I (18) Fall 2005 Structural Hazard #2: Registers (2/2) Fact: Register access is VERY fast: takes less than half the time of ALU stage Solution: introduce convention always Write to Registers during first half of each clock cycle always Read from Registers during second half of each clock cycle Result: can perform Read and Write during same clock cycle

Pipelining I (19) Fall 2005 Things to Remember Optimal Pipeline Each stage is executing part of an instruction each clock cycle. One instruction finishes during each clock cycle. On average, execute far more quickly. What makes this work? Similarities between instructions allow us to use same stages for all instructions (generally). Each stage takes about the same amount of time as all others: little wasted time.