Improved Efficiency for Private Stable Matching Matthew Franklin, Mark Gondree, and Payman Mohassel University of California, Davis 02/07/07 - Session.

Slides:



Advertisements
Similar presentations
Constant-Round Private Database Queries Nenad Dedic and Payman Mohassel Boston UniversityUC Davis.
Advertisements

Mix and Match: A Simple Approach to General Secure Multiparty Computation + Markus Jakobsson Bell Laboratories Ari Juels RSA Laboratories.
Efficient Private Approximation Protocols Piotr Indyk David Woodruff Work in progress.
Boneh-Franklin Identity-based Encryption. 2 Symmetric bilinear groups G = ágñ, g p = 1 e: G G G t Bilinear i.e. e(u a, v b ) = e(u, v) ab Non-degenerate:
Stable Matching Problems with Constant Length Preference Lists Rob Irving, David Manlove, Gregg OMalley University Of Glasgow Department of Computing Science.
Blah blah blah. Zoes shark Thanks to the conference artist Phoebe.
Piyush Kumar (Lecture 3: Stable Marriage) Welcome to COT5405.
PRAM Algorithms Sathish Vadhiyar. PRAM Model - Introduction Parallel Random Access Machine Allows parallel-algorithm designers to treat processing power.
Secure Evaluation of Multivariate Polynomials
Oblivious Branching Program Evaluation
Matching Theory.
Efficient Information Retrieval for Ranked Queries in Cost-Effective Cloud Environments Presenter: Qin Liu a,b Joint work with Chiu C. Tan b, Jie Wu b,
Efficient Two-party and Multiparty Computation against Covert Adversaries Vipul Goyal Payman Mohassel Adam Smith Penn Sate UCLAUC Davis.
CS555Topic 241 Cryptography CS 555 Topic 24: Secure Function Evaluation.
Specialised N-ary Constraint for the Stable Marriage Problem By Chris Unsworth and Patrick Prosser.
Explorations in Anonymous Communication Andrew Bortz with Luis von Ahn Nick Hopper Aladdin Center, Carnegie Mellon University, 8/19/2003.
On Efficient Spatial Matching Raymond Chi-Wing Wong (the Chinese University of Hong Kong) Yufei Tao (the Chinese University of Hong Kong) Ada Wai-Chee.
Co-operative Private Equality Test(CPET) Ronghua Li and Chuan-Kun Wu (received June 21, 2005; revised and accepted July 4, 2005) International Journal.
Lecture 4 CSE 331 Sep 9, Blog posts for lectures Starts from today See Sep 8 post on the blog.
Asymmetric Cryptography part 1 & 2 Haya Shulman Many thanks to Amir Herzberg who donated some of the slides from
Public Key Encryption that Allows PIR Queries Dan Boneh 、 Eyal Kushilevitz 、 Rafail Ostrovsky and William E. Skeith Crypto 2007.
Lecture 9 CSE 331 Sep 21, Gale-Shapley Algorithm Intially all men and women are free While there exists a free woman who can propose Let w be such.
Lecture 8 CSE 331 Sep 17, HW 1 due today Place Q1 and Q2 in separate piles I will not accept HWs after 1:15pm.
Week 11 - Friday.  What did we talk about last time?  Exam 2 post mortem  Cycle detection  Connectivity.
Chapter 10: Iterative Improvement Simplex Method The Design and Analysis of Algorithms.
How to play ANY mental game
Efficient and Robust Private Set Intersection and multiparty multivariate polynomials Dana Dachman-Soled 1, Tal Malkin 1, Mariana Raykova 1, Moti Yung.
The Stable Marriage Problem
Andrew Lindell Aladdin Knowledge Systems and Bar-Ilan University 04/09/08 CRYP-202 Legally-Enforceable Fairness in Secure Two-Party Computation.
1 Stable Matching Problem Goal. Given n men and n women, find a "suitable" matching. n Participants rate members of opposite sex. n Each man lists women.
Insert presenter logo here on slide master. See hidden slide 4 for directions  Session ID: Session Classification: SEUNG GEOL CHOI UNIVERSITY OF MARYLAND.
A Linear Lower Bound on the Communication Complexity of Single-Server PIR Weizmann Institute of Science Israel Iftach HaitnerJonathan HochGil Segev.
On the Practical Feasibility of Secure Distributed Computing A Case Study Gregory Neven, Frank Piessens, Bart De Decker Dept. of Computer Science, K.U.Leuven.
Lecture 3 CSE 331. Stable Matching Problem Problem Statement Algorithm Problem Definition Implementation Analysis.
Lecture 2 CSE 331. Day 1 Survey On UBlearns Day 1 Survey (talking points) Security MS PhD for research Building PC’s for 442 It’s ok to play games –
Stable Matchings a.k.a. the Stable Marriage Problem
Lecture 5 CSE 331 Sep 11, Submit the form I’ll need confirmation in writing. No graded material will be handed back till I get this signed form.
Stable Marriage Problem Introductory talk Yosuke KIKUCHI Dept Comp. and Info. Eng. Tsuyama College of Tech OKAYAMA, JAPAN.
CSE 331: Review. Main Steps in Algorithm Design Problem Statement Algorithm Real world problem Problem Definition Precise mathematical def “Implementation”
1 The Stable Marriage Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij.
1 Secure Multi-party Computation Minimizing Online Rounds Seung Geol Choi Columbia University Joint work with Ariel Elbaz(Columbia University) Tal Malkin(Columbia.
All Pair Shortest Path IOI/ACM ICPC Training June 2004.
David Luebke 1 11/26/2015 Hash Tables. David Luebke 2 11/26/2015 Hash Tables ● Motivation: Dictionaries ■ Set of key/value pairs ■ We care about search,
Design & Co-design of Embedded Systems Final Project: “The Match Maker” Second Phase Oral Presentation Safa S. Mahmoodian.
Bipartite Matching. Unweighted Bipartite Matching.
The Stable Marriage Problem
Fair Shares.
Graph Algorithms Maximum Flow - Best algorithms [Adapted from R.Solis-Oba]
CSCI 256 Data Structures and Algorithm Analysis Lecture 2 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Market Design and Analysis Lecture 1 Lecturer: Ning Chen ( 陈宁 )
Algorithms used by CDNs Stable Marriage Algorithm Consistent Hashing.
Cryptographic methods. Outline  Preliminary Assumptions Public-key encryption  Oblivious Transfer (OT)  Random share based methods  Homomorphic Encryption.
CMSC 414 Computer and Network Security Lecture 2 Jonathan Katz.
Stable Matching Beyond Bipartite Graphs Jie Wu Dept. of Computer and Info. Sciences Temple University.
Matching Boys Girls A B C D E
Stable Matching.
Chapter 1 Introduction: Some Representative Problems
Stable Marriage Problem
Introduction to the Design and Analysis of Algorithms
Chapter 10 Iterative Improvement
The Stable Marriage Problem
Apollo Weize Sun, Mar.10th, 2017.
Committed MPC Multiparty Computation from Homomorphic Commitments
CSE 421: Introduction to Algorithms
Lecture 6 CSE 331 Sep 11, 2017.
Chapter 1 Introduction: Some Representative Problems
Lecture 6 CSE 331 Sep 12, 2016.
Lecture 7 CSE 331 Sep 10, 2014.
Piyush Kumar (Lecture 3: Stable Marriage)
Lecture 7 CSE 331 Sep 11, 2013.
Presentation transcript:

Improved Efficiency for Private Stable Matching Matthew Franklin, Mark Gondree, and Payman Mohassel University of California, Davis 02/07/07 - Session Code: CRYP-203

Insert presenter logo here on slide master Stable Matching Stable Matching (Marriage): N men, N women, each with their own preference list Matching M has an unstable pair (A,B) if: (A,B’), (A’,B) in M A prefers B over B’ B prefers A over A’ M is stable if no unstable pairs exist in M 2 A A1A1 A’ A2A2 B’ B1B1 B B2B2

Insert presenter logo here on slide master Applications Assigning Medical students to Hospitals — In US, Canada, and Scotland Assigning students to schools and universities — In Norway and Singapore National Matching Services Inc. 3

Insert presenter logo here on slide master Outline Introduction — Stable matching problem — Gale-Shapley Algorithm — Privacy Issues Contributions Open problems 4

Insert presenter logo here on slide master The Gale-Shapley Algorithm Notation: ─ N men :{A 1, …, A N } ─ N women: {B 1, …, B N } ─ Preference list for man i: A i [1…N] ─ Preference list for woman i: B i [1…N] ─ List of free men in round k : F k ─ List of engaged men in round k: E k 5

Insert presenter logo here on slide master Gale-Shapley k=1;F k = {A 1, …, A N } While F k is non-empty: Randomly select A from F k A proposes to “next” woman B: (Where he ranks B highest among the women to whom he has never proposed before) If B is free then she becomes engaged to A If B is engaged to some A’ then If B prefers A over A’ then remove A and add A’ to F k Otherwise, F k stays the same F k+1 = F k ; k= k+1 6

Insert presenter logo here on slide master Remarks on Gale-Shapley Round by Round ─ Matches made and broken every round ─ Man optimal Privacy Issues ─ Naïve implementation ─ Matching Authority learns participants’ preference lists ─ Naively distributed computation ─ Traffic pattern: history of matches made and broken 7

Insert presenter logo here on slide master Setting [Golle, FC06] Have multiple (t) Matching Authorities (MAs) MAs receive encrypted preference lists MAs compute the stable matching MAs don’t learn anything Participants only learn their own partner Assume: passive adversaries Security Guaranteed (assuming ≥ 1 honest MA) 8

Insert presenter logo here on slide master Our Contribution Revisit [Golle] — High Communication complexity (Partly due to the chosen variant of Gale-Shapely used) Design a Private and Efficient Protocol — Design a new variant of Gale-Shapely — Tune it for private implementation — Crypto assumptions comparable to [Golle] — Lower round and communication complexities 9

Insert presenter logo here on slide master Our Contributions, Cont’d Summary of protocols and efficiency : 10

Insert presenter logo here on slide master Our variant of Gale-Shapley Real men: {A 1, …, A N }, Fake men: {A N+1, …, A 2N } Real women: {B 1,…,B N }, Fake women:{B N+1,…,B 2N } Preference lists: — Real men: ( [actual preference list], [B N+1,...,B 2N, in any order] ) — Real women: ( [actual preference list], [A N+1,...,A 2N, in any order] ) — Fake women:( [A N+1,...,A 2N, in any order],[A 1,...,A N, in any order]) — Fake men: ( [B N+2,...,B 2N, in any order], B N+1, [B 1,...,B N, in any order] ) 11

Insert presenter logo here on slide master Our Variant, Cont’d Initialization: — F 1 = {A 1 } — {A 2, …, A N } are engaged to {B N+2,…,B 2N }, respectively — {A N+1, …, A 2N } are engaged to {B 1,…, B N }, respectively While F k is not empty: — The free man A in F k proposes to B (The next woman in his preference list to whom he hasn’t proposed) — If B is engaged to some man A’ If B prefers A over A’, let F k+1 = {A’}, and pair A and B Otherwise, F k+1 = F k 12

Insert presenter logo here on slide master Our Variant, Cont’d 2 Claim: Once a fake man proposes to woman B N+1, we have a stable matching Thus, the algorithm’s complexity is O(N 2 ) Also, “Tuned for privacy” — every round k, |F k | = 1 We implement a private version 13

Insert presenter logo here on slide master Protocol Bids — Two types: Free and Engaged — Set of ciphertexts (constant sized) — F k = {Free Bids in round k} — E k = {Engaged Bids in round k} Preference Lists — Encrypted, held by an MA (the “Database”) Everything encrypted with threshold homomorphic enc. 14

Insert presenter logo here on slide master Protocol For k = 1 to 2N 2 : — Select a single free bid from F k. — “Open it” to recover the (encrypted) pointers into the database — Access database to get next fiancée's (encrypted) identity — Form the engaged bid — Privately find the conflicting engaged bid (mix, private equality test) — Mix these two engaged bids — “Resolve the conflict” to find the winner and loser (private comparison) — “Break the engagement” for the loser and add him to F k+1 — Add the winner to E k — Mix all the bids — Let E k+1 = E k 15

Insert presenter logo here on slide master Protocol For k = 1 to 2N 2 : — Select a single free bid from F k. — “Open it” to recover the (encrypted) pointers into the database — Access database to get next fiancée's (encrypted) identity — Form the engaged bid — Privately find the conflicting engaged bid (mix, private equality test) — Mix these two engaged bids — “Resolve the conflict” to find the winner and loser (private comparison) — “Break the engagement” for the loser and add him to F k+1 — Add the winner to E k — Mix all the bids — Let E k+1 = E k 16

Insert presenter logo here on slide master Protocol For k = 1 to 2N 2 : — Select a single free bid from F k. — “Open it” to recover the (encrypted) pointers into the database — Access database to get next fiancée's (encrypted) identity — Form the engaged bid — Privately find the conflicting engaged bid (mix, private equality test) — Mix these two engaged bids — “Resolve the conflict” to find the winner and loser (private comparison) — “Break the engagement” for the loser and add him to F k+1 — Add the winner to E k — Mix all the bids — Let E k+1 = E k 17

Insert presenter logo here on slide master Protocol For k = 1 to 2N 2 : — Select a single free bid from F k. — “Open it” to recover the (encrypted) pointers into the database — Access database to get next fiancée's (encrypted) identity — Form the engaged bid — Privately find the conflicting engaged bid (mix, private equality test) — Mix these two engaged bids — “Resolve the conflict” to find the winner and loser (private comparison) — “Break the engagement” for the loser and add him to F k+1 — Add the winner to E k — Mix all the bids — Let E k+1 = E k 18

Insert presenter logo here on slide master Protocol For k = 1 to 2N 2 : — Select a single free bid from F k. — “Open it” to recover the (encrypted) pointers into the database — Access database to get next fiancée's (encrypted) identity — Form the engaged bid — Privately find the conflicting engaged bid (mix, private equality test) — Mix these two engaged bids — “Resolve the conflict” to find the winner and loser (private comparison) — “Break the engagement” for the loser and add him to F k+1 — Add the winner to E k — Mix all the bids — Let E k+1 = E k 19

Insert presenter logo here on slide master Accessing the database Database D, an array of n=(2N) 2 ciphertexts Given E(i), we want to recover element D[i] Our subprotocol: — Modification of an efficient (1-out-of-n) OT protocol — MAs process E(i) into queries of the protocol — MAs process database’s reply to recover D[i], a ciphertext Our construction — Uses Stern’s OT (1 round, polylog CC) — Again, using threshold homomorphic encryption 20

Insert presenter logo here on slide master A protocol for 2 MAs A more efficient protocol for 2-MA case Private Table Look Ups (LUT) [NN01] (For two-party computation) Private Computation of Turing Machines with a RAM — Circuits equipped with Private LUT Our algorithm can be presented as a TM with RAM Implement privately using [NN01] Extending to multiparty — Not completely distributed 21

Insert presenter logo here on slide master New Developments Extending [NN01] to multiparty — Automatically leads to more efficient private stable matching — Leads to nearly optimal communication 22

Insert presenter logo here on slide master Thank you!! Questions?

Insert presenter logo here on slide master

Golle’s approach Golle’s variant of Gale-Shapley: N real men: {A 1,…, A N }, N real women:{B 1,…,B N } N fake men: {A N+1,…,A 2N } Arbitrary preference lists for fake men Each woman ranks fake men lower than real ones Initialization — All real men are free — All fake men are engaged (in an arbitrary way)

Insert presenter logo here on slide master Golle’s Approach Cont’d For K = 1 to n: — While F K is non-empty: Randomly select A from F k A proposes to woman B: The woman he ranks highest among the women to whom he has never proposed before B is always engaged to some woman A ’ : If B prefers A over A ’ ; Remove A from F K, add A ’ to F k+1 Otherwise, add A to F k+1 Number of free men always N: |F K | = N for all 1≤ K ≤ N

Insert presenter logo here on slide master Shortcomings Golle implements this variant privately — Re-encryption mix-networks — Threshold homomorphic cryptosystems (Paillier encryption) Inefficiencies: — Golle’s variant needs O(N 2 ) rounds to reach a stable matching Complexity of algorithm increases by a factor of N — Another factor N increase size of ciphertext used in Mix-network: O(N) not constant!