Section 8A Growth: Linear vs. Exponential

Slides:



Advertisements
Similar presentations
Chapter 21: Savings Models Lesson Plan Arithmetic Growth and Simple Interest Geometric Growth and Compound Interest A Limit to Compounding A Model for.
Advertisements

Exponential Growth According to legend, chess was invented by Grand Vizier Sissa Ben Dahir, and given to King Shirham of India. The king offered him a.
Exponential Functions en-GB&v=AmFMJC45f1Q.
Section 9C Exponential Modeling (pages 585 – 601)
Exponential Astonishment
ACTIVITY 40 Modeling with Exponential (Section 5.5, pp ) and Logarithmic Functions.
EXPONENTIAL RELATIONS
LSP 120: Quantitative Reasoning and Technological Literacy Section 903 Özlem Elgün.
Exponential Growth and Decay
Section 5.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models.
LSP 120: Quantitative Reasoning and Technological Literacy
OBJECTIVES: FIND EQUATIONS OF POPULATION THAT OBEY THE LAW OF UNINHIBITED GROWTH AND DECAY USE LOGISTIC MODELS Exponential Growth and Decay; Logistic Models.
Applications Growth and Decay Math of Finance Lesson 2.6.
Chapter 2 Functions and Graphs
Enhancing Algebra Instruction Through the Use of Graphing Technology Bill Gillam 10/18/02
UNIT 5: Exponential Growth / Decay Formula:
4-1 exponential functions, growth and decay
Section 3A Uses and Abuses of Percentages Pages
Exponential Growth and Decay
1.7 Exponential Growth and Decay Math 150 Spring 2005.
Review: An exponential function is any function of the form: where a ≠ 0, b ≠ 1, and b > 0. If b > 1, the graph is increasing. If 0 < b < 1, the graph.
Review: An exponential function is any function of the form: where a ≠ 0, b ≠ 1, and b > 0. If b > 1, the graph is increasing. If 0 < b < 1, the graph.
4.8 Exponential and Logarithmic Models
Bell Ringer: (You will turn this in) Read the scenario and follow the directions: This year, Zachary has been babysitting his young cousins after school.
Section 3B Putting Numbers in Perspective
Exponential Growth/Decay Review
Rates of Growth & Decay. Example (1) - a The size of a colony of bacteria was 100 million at 12 am and 200 million at 3am. Assuming that the relative.
Warm Up Evaluate (1.08) (0.95) (1 – 0.02)10
Population Growth. Population Dynamics What types of things affect the size of a population? What types of things affect the size of a population? Immigration:
Quiz 7-1: 1. Where does the graph cross the y-axis? 2. f(1) = ? 3. Horizontal asymptote = ? 4. How was the function transformed to get f(x) above? to get.
Warm-Up In 1990, the population of Houston, TX was 1,637,859. In 1998, the population was 1,786,691. Assuming the population increases by a certain percent.
Copyright © 2005 Pearson Education, Inc. Slide 8-1.
Review: exponential growth and Decay functions. In this lesson, you will review how to write an exponential growth and decay function modeling a percent.
Directions Put your name at the top of a blank sheet of paper. There are 11 word problems around the room. You may start at any problem and do not have.
Dr Zhang Fall 2014 Fordham University
11/23/2015 Precalculus - Lesson 21 - Exponential Models 1 Lesson 21 – Applications of Exponential Functions Precalculus.
Section 4.5 Modeling with Exponential & Logarithmic Functions.
Copyright © 2011 Pearson Education, Inc. Exponential Astonishment.
1 Hall of Fame of Faith Hebrews 11 Part 8. 2 W hen you live by faith you live for different reasons than those around you.
12/7/2015 Math SL1 - Santowski 1 Lesson 16 – Modeling with Exponential Functions Math SL - Santowski.
Copyright © 2011 Pearson Education, Inc. Exponential Astonishment.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Advanced Precalculus Notes 4.8 Exponential Growth and Decay k > 0 growthk < 0 decay.
9.6 EXPONENTIAL GROWTH AND DECAY. EQUATIONS THAT DEAL WITH E Continuously Compounded Interest A=Pe rt A= amount in account after t years t= # of years.
Section 3.1 Exponential Functions. Upon receiving a new job, you are offered a base salary of $50,000 plus a guaranteed raise of 5% for each year you.
Chapter 21: Savings Models Lesson Plan Arithmetic Growth and Simple Interest Geometric Growth and Compound Interest A Limit to Compounding A Model for.
Exponential Growth. An Old Problem about Doubling One penny on the first square, two on the next, four on the next, and so on… How tall is the stack on.
Background Knowledge Write the equation of the line with a slope of ½ that goes through the point (8, 17)
Exponential Equation Exponential Equation (Jeopardy)
5.8 Exponential Growth and Decay Mon Dec 7 Do Now In the laboratory, the number of Escherichia coli bacteria grows exponentially with growth constant k.
DO NOW HW: Exponential Functions Worksheet
12 FURTHER MATHEMATICS Modelling linear growth and decay.
Did You Know?  Tug of War was an Olympic event between 1900 and  When basketball was first invented the hoops were a peach baskets with a bottom.
Exponential and Logarithmic Functions 4 Copyright © Cengage Learning. All rights reserved.
Homework Homework Assignment #8 Read Section 5.8 Page 355, Exercises: 1 – 69(EOO) Quiz next time Rogawski Calculus Copyright © 2008 W. H. Freeman and Company.
Quiz 7-1,2: 1. Where does the graph cross the y-axis? 2. f(1) = ? 3. Horizontal asymptote = ? 4. How was the function : transformed to get f(x) above?
Exponential Astonishment
Chapter 9.3: Modeling with First-Order Differential Equations
Growth: Linear versus Exponential
Warm Up Find a partner at your table.
Unit 2 Exponential Functions
Welcome to LSP 120 Dr. Curt M. White.
Exponential Astonishment
Sequences and Series.
Exponential Astonishment
Growth: Linear versus Exponential
Day 91 – Geometric sequences
Population Ecology.
Unit 2 Exponential Functions
Presentation transcript:

Section 8A Growth: Linear vs. Exponential Pages 490-495

Growth: Linear vs Exponential Imagine two communities, Straightown and Powertown, each with an initial population of 10,000 people. Straightown grows at a constant rate of 500 people per year. Powertown grows at a constant rate of 5% per year. Compare the population growth of Straightown and Powertown. Make sure students understand that the principles above also apply to linear and exponential decay as well.

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 3 10 15 20 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 10 15 20 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 11,500 10 15 20 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 11,500 10 10000 + (10x500) =15000 15 20 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 11,500 10 10000 + (10x500) =15000 15 10000 + (15x500) =17500 20 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 11,500 10 10000 + (10x500) =15000 15 10000 + (15x500) =17500 20 10000 + (20x500) =20000 40

8-A Straightown: initially 10,000 people and growing at a rate of 500 people per year Year Straightown 10,000 1 10,500 2 11,000 3 11,500 10 10000 + (10x500) =15000 15 10000 + (15x500) =17500 20 10000 + (20x500) =20000 40 10000 + (40x500) =30000

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 3 10 15 20 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10 15 20 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10000 x (1.05)3 = 11,576 10 15 20 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10000 x (1.05)3 = 11,576 10 10000 x (1.05)10 = 16,289 15 20 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10000 x (1.05)3 = 11,576 10 10000 x (1.05)10 = 16,289 15 10000 x (1.05)15 = 20,789 20 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10000 x (1.05)3 = 11,576 10 10000 x (1.05)10 = 16,289 15 10000 x (1.05)15 = 20,789 20 10000 x (1.05)20 = 26,533 40

8-A Powertown: initially 10,000 people and growing at a rate of 5% per year Year Powertown 10,000 1 10000 x (1.05) = 10,500 2 10000 x (1.05)2 = 11,025 3 10000 x (1.05)3 = 11,576 10 10000 x (1.05)10 = 16,289 15 10000 x (1.05)15 = 20,789 20 10000 x (1.05)20 = 26,533 40 10000 x (1.05)40 = 70,400

Population Comparison Year Straightown 1 10,500 2 11,000 3 11,500 10 15,000 15 17,500 20 20,000 40 30,000 Powertown 10,500 11,025 11,576 16,289 20,789 26,533 70,400

Growth: Linear versus Exponential

Two Basic Growth Patterns Linear Growth (Decay) occurs when a quantity increases (decreases) by the same absolute amount in each unit of time. Example: Straightown -- 500 each year Exponential Growth (Decay) occurs when a quantity increases (decreases) by the same relative amount—that is, by the same percentage—in each unit of time. Example: Powertown: -- 5% each year Make sure students understand that the principles above also apply to linear and exponential decay as well.

Linear/Exponential Growth/Decay? The number of students at Wilson High School has increased by 50 in each of the past four years. Which kind of growth is this? Linear Growth If the student populations was 750 four years ago, what is it today? 4 years ago: 750 Now (4 years later): 750 + (4 x 50) = 950 Make sure students understand that the principles above also apply to linear and exponential decay as well.

Linear/Exponential Growth/Decay? The price of milk has been rising with inflation at 3.5% per year. Which kind of growth is this? Exponential Growth If the price was $1.80/gallon two years ago, what is it now? 2 years ago: $1.80/gallon Now (2 years later): $1.80 × (1.035)2 = $1.93/gallon

Linear/Exponential Growth/Decay? Tax law allows you to depreciate the value of your equipment by $200 per year. Which kind of growth is this? Linear Decay If you purchased the equipment three years ago for $1000, what is its depreciated value now? 3 years ago: $1000 Now (3 years later): $1000 – (3 x 200) = $400

Linear/Exponential Growth/Decay? The memory capacity of state-of-the-art computer hard drives is doubling approximately every two years. Which kind of growth is this? [doubling means increasing by 100%] Exponential Growth If the company’s top of the line drive holds 300 gigabytes today, what will it hold in six years? Now: 300 gigabytes 2 years: 600 gigabytes 4 years: 1200 gigabytes 6 years: 2400 gigabytes

Linear/Exponential Growth/Decay? The price of DVD recorders has been falling by about 25% per year. Which kind of growth is this? Exponential Decay If the price is $200 today, what can you expect it to be in 2 years? Now: $200 2 years: 200 x (0.75)2 = $112.50

8-A More Practice The population of Danbury is increasing by 505 people per year. If the population is 15,000 today, what will it be in three years? 16,515 During the worst periods of hyper inflation in Brazil, the price of food increased at a rate of 30% per month. If your food bill was $100 one month during this period, what was it two months later? $169 The price of computer memory is decreasing at a rate of 12% per year. If a memory chip costs $80 today, what will it cost in 2 years? $61.95

8-A The Impact of Doubling Parable 1 From Hero to Headless in 64 Easy Steps Parable 2 The Magic Penny Parable 3 Bacteria in a Bottle

From Hero to Headless in 64 Easy Steps Parable 1 From Hero to Headless in 64 Easy Steps Parable 1 “If you please, king, put one grain of wheat on the first square of my chessboard,” said the inventor. “ Then place two grains on the second square, four grains on the third square, eight grains on the fourth square and so on.” The king gladly agreed, thinking the man a fool for asking for a few grains of wheat when he could have had gold or jewels.

8-A Parable 1 Square Grains on square 1 1 = 20 2 2 = 21 3 4 = 22 = 2×2 4 8 = 23 = 2×2×2 5 16 = 24 = 2×2×2×2 . . .

8-A Parable 1 Square Grains on square 1 1 = 20 2 2 = 21 3 4 = 22 4 8 = 23 5 16 = 24 . . . 64 263

Formula for total on board Parable 1 8-A Square Grains on square Total Grains on chessboard Formula for total on board 1 1 = 20 21 – 1 2 2 = 21 1+2 = 3 22 – 1 3 4 = 22 3+4 = 7 23 – 1 4 8 = 23 7+8 = 15 24 – 1 5 16 = 24 15 + 16 = 31 25 – 1 . . . 64 263 264 - 1

From Hero to Headless in 64 Easy Steps Parable 1 From Hero to Headless in 64 Easy Steps Parable 1 “If you please, king, put one grain of wheat on the first square of my chessboard,” said the inventor. “ Then place two grains on the second square, four grains on the third square, eight grains on the fourth square and so on.” The king gladly agreed, thinking the man a fool for asking for a few grains of wheat when he could have had gold or jewels. 264 – 1 = 1.8×1019 = ≈ 18 billion, billion grains of wheat This is more than all the grains of wheat harvested in human history. The king never finished paying the inventor and according to legend, instead had him beheaded.

Parable 2 The Magic Penny Parable 2 A leprechaun promises you fantastic wealth and hands you a penny. You place the penny under your pillow and the next morning, to your surprise, you find two pennies. The following morning 4 pennies and the next morning 8 pennies. Each magic penny turns into two magic pennies.

8-A Parable 2 Day Amount under pillow $0.01 1 $0.02 2 $0.04 3 $0.08 4 $0.16 . . . Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

8-A Parable 2 Day Amount under pillow $0.01 $0.01 = $0.01×20 1 $0.02 $0.02 = $0.01×21 2 $0.04 $0.04 = $0.01×22 3 $0.08 $0.08 = $0.01×23 4 $0.16 $0.16 = $0.01×24 . . . t $0.01×2t Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

Parable 2 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) Time Amount under pillow 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) 1 month (30 days) 50 days Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

Parable 2 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) Time Amount under pillow 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) $0.01×214= $163.84 1 month (30 days) 50 days Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

Parable 2 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) Time Amount under pillow 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) $0.01×214= $163.84 1 month (30 days) $0.01×230= $10,737,418.24 50 days Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

Parable 2 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) Time Amount under pillow 1 week (7 days) $0.01×27= $1.28 2 weeks (14 days) $0.01×214= $163.84 1 month (30 days) $0.01×230= $10,737,418.24 50 days $0.01×250= $11.3 trillion Although many financial institutions will provide the individual with an amortization schedule upon initiating the loan, there may be two important reasons that students should be able to follow the simple mathematics of a schedule. 1) Once they gain a little confidence with the flow of the columns, they are in a position to modify their own schedules using Excel or some other software and customizing it to facilitate their personal strategies of making additional payments of principal. 2) It would also be important to periodically check the accuracy of the lending institution’s monthly or annual statements to verify that everything is legitimate and up to date.

Parable 2 The Magic Penny Parable 2 A leprechaun promises you fantastic wealth and hands you a penny. You place the penny under your pillow and the next morning, to your surprise, you find two pennies. The following morning 4 pennies and the next morning 8 pennies. Each magic penny turns into two magic pennies. WOW! The US government needs to look for a leprechaun with a magic penny.

Parable 3 Bacteria in a Bottle Parable 3 Suppose you place a single bacterium in a bottle at 11:00 am. It grows and at 11:01 divides into two bacteria. These two bacteria each grow and at 11:02 divide into four bacteria, which grow and at 11:03 divide into eight bacteria, and so on. Question0: If the bottle is full at NOON, how many bacteria are in the bottle? Question1: When was the bottle half full? Question2: If you (a mathematically sophisticated bacterium) warn of impending disaster at 11:56, will anyone believe you? Question3: At 11:59, your fellow bacteria find 3 more bottles to fill. How much time have they gained for the bacteria civilization?

Single bacteria in a bottle at 11:00 am 2 bacteria at 11:01 Question0: If the bottle is full at NOON, how many bacteria are in the bottle? Single bacteria in a bottle at 11:00 am 2 bacteria at 11:01 4 bacteria at 11:02 8 bacteria at 11:03 . . . At 12:00 (60 minutes later) the bottle is full and contains 260 ≈ 1.15 x1018 Make sure students understand that the principles above also apply to linear and exponential decay as well.

Question1: When was the bottle half full? Single bacteria in a bottle at 11:00 am 2 bacteria at 11:01 4 bacteria at 11:02 8 bacteria at 11:03 . . . Bottle is full at 12:00 (60 minutes later) and so is 1/2 full at 11:59 am Make sure students understand that the principles above also apply to linear and exponential decay as well.

8-A Question2: If you (a mathematically sophisticated bacterium) warn of impending disaster at 11:56, will anyone believe you? ½ full at 11:59 ¼ full at 11:58 ⅛ full at 11:57 full at 11:56 At 11:56 the amount of unused space is 15 times the amount of used space. Make sure students understand that the principles above also apply to linear and exponential decay as well. Your mathematically unsophisticated bacteria friends will not believe you when you warn of impending disaster at 11:56.

enough bacteria to fill 1 bottle at 12:00 Question3: At 11:59, your fellow bacteria find 3 more bottles to fill. How much time have they gained for the bacteria civilization? There are . . . enough bacteria to fill 1 bottle at 12:00 enough bacteria to fill 2 bottles at 12:01 enough bacteria to fill 4 bottles at 12:02 Make sure students understand that the principles above also apply to linear and exponential decay as well. They have gained only 2 additional minutes for the bacteria civilization.

Question4: Is this scary? By 1:00- there are 2120 bacteria. This is enough bacteria to cover the entire surface of the Earth in a layer more than 2 meters deep! After 5 ½ hours, at this rate . . . the volume of bacteria would exceed the volume of the known universe. Make sure students understand that the principles above also apply to linear and exponential decay as well. Yes, this is scary!

Key Facts about Exponential Growth • Exponential growth cannot continue indefinitely. After only a relatively small number of doublings, exponentially growing quantities reach impossible proportions. • Exponential growth leads to repeated doublings. With each doubling, the amount of increase is approximately equal to the sum of all preceding doublings. Discussing each of the parables from the text are vital. Students should not miss this content and all the ramifications to the quantitative world around us.

8-A Repeated Doublings

Homework : Page 496 # 8, 10, 12, 14, 18, 26