Halliday/Resnick/Walker Fundamentals of Physics 8th edition

Slides:



Advertisements
Similar presentations
Magnetic Force Acting on a Current-Carrying Conductor
Advertisements

Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Lecture 8 Examples of Magnetic Fields Chapter 19.7  Outline Long Wire and Ampere’s Law Two Parallel Contours Solenoid.
1 My Chapter 19 Lecture Outline. 2 Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle.
How to Use This Presentation
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 20 Magnetism.
Magnetism Review and tid-bits. Properties of magnets A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 19: Magnetic Forces and Fields.
Chapter 30 Sources of the magnetic field
Magnetic Fields and Forces
Chapter 32 Magnetic Fields.
Chapter 22 Magnetism.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Sources of Magnetic Field Chapter 28 Study the magnetic field generated by a moving charge Consider magnetic field of a current-carrying conductor Examine.
Dale E. Gary Wenda Cao NJIT Physics Department
Physics 152 Magnetism Walker, Chapter B Field Outside a Wire Earlier we said that magnetic fields are created by moving charges. A current in a.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Announcements WebAssign HW Set 5 due October 10
Chapter 30: Sources of the Magnetic Field
Cutnell/Johnson Physics 8th edition
Chapter 29 Magnetic Fields Due to Currents In this chapter we will explore the relationship between an electric current and the magnetic field it generates.
Sources of the Magnetic Field
Magnetism 1. 2 Magnetic fields can be caused in three different ways 1. A moving electrical charge such as a wire with current flowing in it 2. By electrons.
Gauss’ Law for magnetic fields There are no magnetic “charges”.
For the wire carrying a flow of electrons in the direction shown, is the magnetic field at point P - P (a)to the right (b)to the left (c)up (d)into the.
When a current-carrying loop is placed in a magnetic field, the loop tends to rotate such that its normal becomes aligned with the magnetic field.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
Halliday/Resnick/Walker Fundamentals of Physics
30.5 Magnetic flux  30. Fig 30-CO, p.927
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 22 Physics, 4 th Edition James S. Walker.
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
CHECKPOINT: What is the current direction in this loop
Announcements WebAssign HW Set 6 due this Friday Problems cover material from Chapters 19 Estimated course grades available on e-learning My office hours.
Magnetic Field Chapter 28 opener. A long coil of wire with many closely spaced loops is called a solenoid. When a long solenoid carries an electric current,
Announcements WebAssign HW Set 5 due October 10 Problems cover material from Chapters 18 HW set 6 due on October 17 (Chapter 19) Prof. Kumar tea and cookies.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
Chapter 19 Table of Contents Section 1 Magnets and Magnetic Fields
Magnets and the magnetic field Electric currents create magnetic fields Magnetic fields of wires, loops, and solenoids Magnetic forces on charges and currents.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
IB Assessment Statements  Topic 6-3, Magnetic Force and Field State that moving charges give rise to magnetic fields Draw magnetic field.
Magnetic Fields. Magnetic Fields and Forces a single magnetic pole has never been isolated magnetic poles are always found in pairs Earth itself is a.
Lecture 28: Currents and Magnetic Field: I
© Shannon W. Helzer. All Rights Reserved. 1 Chapter 29 – Magnetic Fields Due to Current.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Physics 212 Lecture 14, Slide 1 Physics 212 Lecture 14 Biot-Savart Law :05.
Halliday/Resnick/Walker Fundamentals of Physics
Week 9 Presentation 1 Electromagnets 1. Learning Objectives: 1. Determine the magnitude and direction of the magnetic field strength generated by a straight.
Ph126 Spring 2008 Lecture #8 Magnetic Fields Produced by Moving Charges Prof. Gregory Tarl é
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Magnetic Fields due to Currents Chapter 29. The magnitude of the field dB produced at point P at distance r by a current-length element ds turns out to.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
PHY 102: Lecture Magnetic Field 6.2 Magnetic Force on Moving Charges 6.3 Magnetic Force on Currents 6.4 Magnetic Field Produced by Current.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
Chapter 20 Magnetism Conceptual Quiz 20 Conceptual Quiz Questions.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
AP Physics ST Solenoid Magnetic Flux Gauss’s Law in Magnetism
Nighttime exam? If we have the exam in the evening of July 3 rd, we would cancel class on July 5 th and you get a long weekend. Would you prefer to have.
PHY 102: Lecture Magnetic Field
Chapter 19: Magnetic Forces and Fields
Magnetic Fields and Forces
PHYS 1444 – Section 004 Lecture #11
Magnetism =due to moving electrical charges.
Halliday/Resnick/Walker Fundamentals of Physics
Conceptual MC Questions
Presentation transcript:

Halliday/Resnick/Walker Fundamentals of Physics 8th edition Classroom Response System Questions Chapter 29 Magnetic Fields Due to Currents Reading Quiz Questions

29.2.1. Which of the following choices correctly indicates the relationship between the magnetic field due to a current carrying, long straight wire at a distance R from the wire? a) b) c) d) e)

29.2.1. Which of the following choices correctly indicates the relationship between the magnetic field due to a current carrying, long straight wire at a distance R from the wire? a) b) c) d) e)

29.2.2. At a distance R from a current carrying wire, what is the direction of the magnetic field relative to the wire? a) radially toward the wire b) radially away from the wire c) parallel to the wire d) in the direction opposite to that of the current e) in the direction that is perpendicular to both the wire and to the radial direction

29.2.2. At a distance R from a current carrying wire, what is the direction of the magnetic field relative to the wire? a) radially toward the wire b) radially away from the wire c) parallel to the wire d) in the direction opposite to that of the current e) in the direction that is perpendicular to both the wire and to the radial direction

29. 2. 3. A magnetic field is generated by a current-carrying wire 29.2.3. A magnetic field is generated by a current-carrying wire. Which one of the following statements concerning this situation is false? a) The magnitude of this magnetic field decreases with increasing distance away from the wire. b) A right-hand rule is useful for determining the direction of the magnetic field at a particular location. c) The magnitude of the magnetic field is directly proportional to the magnitude of the current. d) The magnetic field is parallel to the direction of the current in the wire.

29. 2. 3. A magnetic field is generated by a current-carrying wire 29.2.3. A magnetic field is generated by a current-carrying wire. Which one of the following statements concerning this situation is false? a) The magnitude of this magnetic field decreases with increasing distance away from the wire. b) A right-hand rule is useful for determining the direction of the magnetic field at a particular location. c) The magnitude of the magnetic field is directly proportional to the magnitude of the current. d) The magnetic field is parallel to the direction of the current in the wire.

29.2.4. Two circular loops carry identical currents, but the radius of one loop is twice that of the other. How do the magnetic fields at the centers of the loops compare? a) In both cases, the magnetic field at the center would be zero tesla. b) The magnetic field at the center of the larger loop is twice that at the center of the smaller loop. c) The magnetic field at the center of the larger loop is the same as that at the center of the smaller loop. d) The magnetic field at the center of the larger loop is one-half that at the center of the smaller loop. e) The magnetic field at the center of the larger loop is one-fourth that at the center of the smaller loop.

29.2.4. Two circular loops carry identical currents, but the radius of one loop is twice that of the other. How do the magnetic fields at the centers of the loops compare? a) In both cases, the magnetic field at the center would be zero tesla. b) The magnetic field at the center of the larger loop is twice that at the center of the smaller loop. c) The magnetic field at the center of the larger loop is the same as that at the center of the smaller loop. d) The magnetic field at the center of the larger loop is one-half that at the center of the smaller loop. e) The magnetic field at the center of the larger loop is one-fourth that at the center of the smaller loop.

29.3.1. Consider two parallel wires carrying current in the same direction. Which one of the following statements to true concerning this situation? a) The two wires will attract each other, even if no external magnetic field is applied to the wires. b) The two wires will repel each other, even if no external magnetic field is applied to the wires. c) The two wires will attract each other, only if an external magnetic field is applied to the wires. d) The two wires will repel each other, only if an external magnetic field is applied to the wires. e) The wires will be neither attracted nor repelled from each other when no external magnetic field is applied to the wires.

29.3.1. Consider two parallel wires carrying current in the same direction. Which one of the following statements to true concerning this situation? a) The two wires will attract each other, even if no external magnetic field is applied to the wires. b) The two wires will repel each other, even if no external magnetic field is applied to the wires. c) The two wires will attract each other, only if an external magnetic field is applied to the wires. d) The two wires will repel each other, only if an external magnetic field is applied to the wires. e) The wires will be neither attracted nor repelled from each other when no external magnetic field is applied to the wires.

29.3.2. Consider two parallel wires carrying current in opposite directions. Which one of the following statements to true concerning this situation? a) The two wires will attract each other, even if no external magnetic field is applied to the wires. b) The two wires will repel each other, even if no external magnetic field is applied to the wires. c) The two wires will attract each other, only if an external magnetic field is applied to the wires. d) The two wires will repel each other, only if an external magnetic field is applied to the wires. e) The wires will be neither attracted nor repelled from each other when no external magnetic field is applied to the wires.

29.3.2. Consider two parallel wires carrying current in opposite directions. Which one of the following statements to true concerning this situation? a) The two wires will attract each other, even if no external magnetic field is applied to the wires. b) The two wires will repel each other, even if no external magnetic field is applied to the wires. c) The two wires will attract each other, only if an external magnetic field is applied to the wires. d) The two wires will repel each other, only if an external magnetic field is applied to the wires. e) The wires will be neither attracted nor repelled from each other when no external magnetic field is applied to the wires.

29.3.3. Which one of the following parameters is not used to determine the magnetic force on a current-carrying wire in a magnetic field? a) length of the wire b) radius of the wire c) direction of the magnetic field with respect to the direction of the current d) the strength of the magnetic field e) the magnitude of the electric current

29.3.3. Which one of the following parameters is not used to determine the magnetic force on a current-carrying wire in a magnetic field? a) length of the wire b) radius of the wire c) direction of the magnetic field with respect to the direction of the current d) the strength of the magnetic field e) the magnitude of the electric current

29. 3. 4. Two long wires are parallel to each other 29.3.4. Two long wires are parallel to each other. One wire carries a current directed due east and the other carries a current of the same magnitude, but directed due west. Which one of the following statements concerning this situation is false? a) The magnetic field in the plane of the wires at the midpoint between the two wires is equal to zero tesla. b) The magnetic forces due to the currents carried by the wires causes the wires to move apart. c) If you are looking toward the west along the wire carrying the current toward the west, the magnetic field lines are directed clockwise around the wire. d) The magnetic field produced by each wire has its greatest magnitude outside, but near the surface of the wire.

29. 3. 4. Two long wires are parallel to each other 29.3.4. Two long wires are parallel to each other. One wire carries a current directed due east and the other carries a current of the same magnitude, but directed due west. Which one of the following statements concerning this situation is false? a) The magnetic field in the plane of the wires at the midpoint between the two wires is equal to zero tesla. b) The magnetic forces due to the currents carried by the wires causes the wires to move apart. c) If you are looking toward the west along the wire carrying the current toward the west, the magnetic field lines are directed clockwise around the wire. d) The magnetic field produced by each wire has its greatest magnitude outside, but near the surface of the wire.

29.4.1. Which of the following may be determined using Ampere’s law? a) electric fields due to current carrying wires b) magnetic forces between two current carrying wires c) magnetic fields due to current carrying wires d) magnetic forces acting on charged particles e) magnetic fields due to permanent magnets

29.4.1. Which of the following may be determined using Ampere’s law? a) electric fields due to current carrying wires b) magnetic forces between two current carrying wires c) magnetic fields due to current carrying wires d) magnetic forces acting on charged particles e) magnetic fields due to permanent magnets

29.4.2. Under which of the following conditions is Ampere’s law most easily applied? a) the currents are all in the same direction b) the magnetic fields are spherically symmetrical c) no currents are present within the system d) the magnetic fields are cylindrically symmetric e) no charged particles are present in the system

29.4.2. Under which of the following conditions is Ampere’s law most easily applied? a) the currents are all in the same direction b) the magnetic fields are spherically symmetrical c) no currents are present within the system d) the magnetic fields are cylindrically symmetric e) no charged particles are present in the system

29.4.3. Which one of the following statement concerning Ampere’s law for static magnetic fields is false? a) The strength of the magnetic field produced by the current is not dependent on the distance from the current geometry that produces the magnetic field. b) A closed path of arbitrary shape is constructed around the current. c) This law may be applied to any current geometry that produces a magnetic field that does not change with time. d) The component of the magnetic field that is parallel to the closed path is used in Ampere’s law. e) The permeability of free space is a constant that appears in Ampere’s law.

29.4.3. Which one of the following statement concerning Ampere’s law for static magnetic fields is false? a) The strength of the magnetic field produced by the current is not dependent on the distance from the current geometry that produces the magnetic field. b) A closed path of arbitrary shape is constructed around the current. c) This law may be applied to any current geometry that produces a magnetic field that does not change with time. d) The component of the magnetic field that is parallel to the closed path is used in Ampere’s law. e) The permeability of free space is a constant that appears in Ampere’s law.

29. 4. 4. Ampere’s law may be written as 29.4.4. Ampere’s law may be written as . Consider the circular closed loop located near a current carrying wire as shown. What does the left side of the above equal for the closed loop if the current is directed to the right and has a magnitude of 2.0 A? The center of the loop, which has a radius of 2.5 cm, is located 4.0 cm from the wire. a) zero b) 3.1 Tm c) 4.8 Tm d) 7.2 Tm e) This cannot be determined with only the information given.

29. 4. 4. Ampere’s law may be written as 29.4.4. Ampere’s law may be written as . Consider the circular closed loop located near a current carrying wire as shown. What does the left side of the above equal for the closed loop if the current is directed to the right and has a magnitude of 2.0 A? The center of the loop, which has a radius of 2.5 cm, is located 4.0 cm from the wire. a) zero b) 3.1 Tm c) 4.8 Tm d) 7.2 Tm e) This cannot be determined with only the information given.

29.5.1. What is a solenoid? a) a single loop of wire in the shape of a circle b) a radio antenna c) a long coil of wire in the shape of a helix d) a scanning mechanism inside of a television e) a magnet that is inserted into a coil of wire

29.5.1. What is a solenoid? a) a single loop of wire in the shape of a circle b) a radio antenna c) a long coil of wire in the shape of a helix d) a scanning mechanism inside of a television e) a magnet that is inserted into a coil of wire

29.5.2. What is the name given to the wire object shown in the drawing? a) D-ring b) toroid c) armature d) solenoid e) wiggler

29.5.2. What is the name given to the wire object shown in the drawing? a) D-ring b) toroid c) armature d) solenoid e) wiggler

29.5.3. The coils of a solenoid are stretched so that the length of the solenoid is twice its original length. Assuming the same current is passed though the solenoid before and after it is stretched, how does the magnetic field inside the solenoid change, if at all, as a result of the stretching? a) The magnetic field after the stretching is one-fourth the value it was before stretching. b) The magnetic field after the stretching is one-half the value it was before stretching. c) The magnetic field after the stretching is the same as the value it was before stretching. d) The magnetic field after the stretching is twice the value it was before stretching. e) The magnetic field after the stretching is four times the value it was before stretching.

29.5.3. The coils of a solenoid are stretched so that the length of the solenoid is twice its original length. Assuming the same current is passed though the solenoid before and after it is stretched, how does the magnetic field inside the solenoid change, if at all, as a result of the stretching? a) The magnetic field after the stretching is one-fourth the value it was before stretching. b) The magnetic field after the stretching is one-half the value it was before stretching. c) The magnetic field after the stretching is the same as the value it was before stretching. d) The magnetic field after the stretching is twice the value it was before stretching. e) The magnetic field after the stretching is four times the value it was before stretching.