STATISTICAL ANALYSIS OF ABRUPT CLIMATE CHANGES * Instituto de Hidráulica Ambiental, IHCantabria, Universidad de Cantabria Melisa Menéndez*; I. J. Losada;

Slides:



Advertisements
Similar presentations
Introduction to modelling extremes Marian Scott (with thanks to Clive Anderson, Trevor Hoey) NERC August 2009.
Advertisements

Statistical modelling of precipitation time series including probability assessments of extreme events Silke Trömel and Christian-D. Schönwiese Institute.
Point Estimation Notes of STAT 6205 by Dr. Fan.
HIGH RESOLUTION STUDIES WITH BIOMARKERS IN PALEOCEANOGRAPHY
Sensitivity of the Western Mediterranean Sea to Holocene climate variability Isabel Cacho 1, Gemma Herrera 1, Jaume Frigola 1, Miquel Canals 1 & Ana Moreno.
Creación de una base de datos de precipitación y temperatura a escala diaria en el noreste de la Península Ibérica: Aplicación en estudios de tendencias.
CHAPTER 21 Inferential Statistical Analysis. Understanding probability The idea of probability is central to inferential statistics. It means the chance.
Estimation  Samples are collected to estimate characteristics of the population of particular interest. Parameter – numerical characteristic of the population.
Snow Trends in Northern Spain. Analysis and Simulation with Statistical Downscaling Methods Thanks to: Daniel San Martín, Sixto.
EVSC 495/EVAT 795 Data Analysis & Climate Change Class hours: TuTh 2:00-3:15 pm Instructor: Michael E. Mann.
Christine Smyth and Jim Mori Disaster Prevention Research Institute, Kyoto University.
Analysis of Extremes in Climate Science Francis Zwiers Climate Research Division, Environment Canada. Photo: F. Zwiers.
Nidal Salim, Walter Wildi Institute F.-A. Forel, University of Geneva, Switzerland Impact of global climate change on water resources in the Israeli, Jordanian.
19. September 2003 Int.Conference Earth Systems Modelling1 Climatic Extremes and Rare Events: Statistics and Modelling Andreas Hense, Meteorologisches.
El Niño Effects on Goleta Coast Wave Climate
Extremes ● An extreme value is an unusually large – or small – magnitude. ● Extreme value analysis (EVA) has as objective to quantify the stochastic behavior.
Simulation Modeling and Analysis
Assessing Hurricane Intensity TEAM TIGERS HeatherEleanorMattAristaElizabeth This presentation funded by Halliburton.
Regression Model Building Setting: Possibly a large set of predictor variables (including interactions). Goal: Fit a parsimonious model that explains variation.
Hydrologic Statistics
Paleoclimatology Why is it important? Angela Colbert Climate Modeling Group October 24, 2011.
Overview G. Jogesh Babu. Probability theory Probability is all about flip of a coin Conditional probability & Bayes theorem (Bayesian analysis) Expectation,
Creating an Orbitally Tuned Chronology. Overview.
Extreme Value Analysis What is extreme value analysis?  Different statistical distributions that are used to more accurately describe the extremes of.
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Objective This paper presents a statistical test of the orbital forcing of glacial terminations. Main Result Glacial periods terminated every two or third.
OC 450: Orbital Controls on Climate (Chaps 8 and 10) Main Points: Small cyclic variations in the earth’s orbital characteristics affect the distribution.
PAGE 1 Using millennial AOGCM simulation as a laboratory to derive and test hypotheses Hans von Storch 12, E. Zorita 1 and F. González-Rouco 3 1 Institute.
Jana Sillmann Max Planck Institute for Meteorology, Hamburg
Relationship between global mean sea-level, global mean temperature and heat-flux in a climate simulation of the past millennium Hans von Storch, Eduardo.
LOGISTIC REGRESSION A statistical procedure to relate the probability of an event to explanatory variables Used in epidemiology to describe and evaluate.
Japan Earthquake 3/11/2011 Climate and Milankovich Cycles.
1 Probabilistic Scenario Analysis (PSA) 2 PSA -History In 1940’s - work on the atomic bomb In the 1950's - used as "what if" scenarios for nuclear proliferation.
MILANK OVITCH cycles. What are the Milankovitch Cycles They are a series of theoretical cycles presented by Yugoslav Astronomer Milutin Milankovitch that.
Why should a geologist be studying climate?. What defines INTERVALS on geologic timescale?
Sea level Workshop – Paris 2006 Assessing the impact of long term trends in extreme sea levels on offshore and coastal installations Ralph Rayner Marine.
Hurricane Frequency and Sea Surface Temperature EAS 4803 Sheliza Bhanjee.
Orbital Forcing on Climate Finish Climates of Geologic Time Introduction to Orbital Factors Axial Tilt Axial Precession Changes in Earth’s eccentric orbit.
Overview G. Jogesh Babu. Overview of Astrostatistics A brief description of modern astronomy & astrophysics. Many statistical concepts have their roots.
Discuss the relationship between climate and biomes.
Stats Term Test 4 Solutions. c) d) An alternative solution is to use the probability mass function and.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and  2 Now, we need procedures to calculate  and  2, themselves.
Comparison of Large-Scale Proxy-Based Temperature Reconstructions over the Past Few Centuries M.E. Mann, Department of Environmental Sciences University.
Chapter 2- Activity 3 How Do Earth’s Orbital Variations Affect Climate?
Investigating the Hockey Stick Climate Model EAS Dr. Wang 4/22/08Robert Binion.
Weather, Climate and Society ATMO 336 Seasons Orbital Variations and Ice Ages.
Our Current Seasons. seasons ence/terc/content/visualizations/es0408/es 0408page01.cfm?chapter_no=04http://
Statistical principles: the normal distribution and methods of testing Or, “Explaining the arrangement of things”
Overview G. Jogesh Babu. R Programming environment Introduction to R programming language R is an integrated suite of software facilities for data manipulation,
Modeling and Simulation CS 313
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and 2 Now, we need procedures to calculate  and 2 , themselves.
Chapter 4: Basic Estimation Techniques
Lecture 20: Orbital Variations in Ice Sheets (Milankovitch Cycles)
Chapter 2: TWO-VARIABLE REGRESSION ANALYSIS: Some basic Ideas
Long-term climate change & Short-term climate variability
Modeling and Simulation CS 313
Probability.
Unit 6 (Energy Budget and Insolation) Extension-
Basic Estimation Techniques
Do Now Please take out your Milankovitch Cycles Packet.
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
POINT ESTIMATOR OF PARAMETERS
Earth Sun Geometry.
Natural climate change
Wasting class time? Please get out a piece of paper and read the board! 
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and 2 Now, we need procedures to calculate  and 2 , themselves.
Historical Climate Change
1/2555 สมศักดิ์ ศิวดำรงพงศ์
Ocean/atmosphere variability related to the development of tropical Pacific sea-surface temperature anomalies in the CCSM2.0 and CCSM3.0 Bruce T. Anderson,
PALEO CLIMATE Eko Haryono.
Presentation transcript:

STATISTICAL ANALYSIS OF ABRUPT CLIMATE CHANGES * Instituto de Hidráulica Ambiental, IHCantabria, Universidad de Cantabria Melisa Menéndez*; I. J. Losada; F. J. Méndez; J. Grimalt; M. Canals; B. Martrat.

CLIVAR-ES, Madrid, Feb-2009 We are interested on..  Modeling the occurrence of ACC (Frequency)  Modeling the abrupt Temperature changes (Intensity) Studying the Abrupt Climate Changes (ACC) events in the past t t Frequency (a) Intensity (b) future ? ? Quantifying the influence of possible forcings Analyze time variations of interest (cycles?)

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  The basic idea.. time (bp) Sample Cumulative distribution function ↔ Probability density function cdf pdf Random variable, X Stochastic process Tª

CLIVAR-ES, Madrid, Feb-2009  The basic idea.. METHODOLOGY Poisson distribution Pareto distribution FREQUENCY INTENSITY (Rare events process) (Abrupt changes require a minimum magnitude)

CLIVAR-ES, Madrid, Feb-2009  But….. Is it a stationary process? Number of ACC ACC has characteristics that change systematically through the time METHODOLOGY

CLIVAR-ES, Madrid, Feb-2009 Stationary process Non-Stationary process The probability that a ACC happens, of a magnitude, varies through time METHODOLOGY

CLIVAR-ES, Madrid, Feb-2009 Analysis of time series Statistical Model | Non-stationary theory | select best model / Fit | Inference / bias | Model checking Climatic information Climatic variability METHODOLOGY 1.Identifying ACC events 2.Probability distribution 3.Time-dependent parameters 4.Potential covariates 5.Regression model 6.Fitness 7.Select best model 8.Model cheking

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Identifying ACC events..

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Identifying ACC events..

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Identifying ACC events..

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Identifying ACC events..

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY Poisson distribution Pareto distribution FREQUENCY INTENSITY  Statistical Model

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Statistical Model Poisson distribution Pareto distribution FREQUENCY Occurrence rate varies through time Magnitude of Tª change varies through time INTENSITY

CLIVAR-ES, Madrid, Feb-2009 Climatic Theory of Milankovitch Milankovitch cycles are the collective effect of changes in the Earth's movements upon its climate This theory explains climatic changes by orbital parameters: axial tilt METHODOLOGY  Potential covariates

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY Isolation Eccentricity Obliquity Precession  Potential covariates

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Potential covariates

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Potential covariates

CLIVAR-ES, Madrid, Feb-2009 METHODOLOGY  Potential covariates M1M1 M2M2 M3M3 (5 parámetros) To obtain the simplest possible model (following the principle of parsimony) that fits the data sufficiently well: STEPWISE PROCEDURE

CLIVAR-ES, Madrid, Feb-2009 Maximum likelihood estimation To study statistical significance of covariates: profile likelihood technique METHODOLOGY  Statistical Model: Fitness

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Data SST time series in Alborán Sea Martrat et al., 2004

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Data ACC warm events

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Data ACC cold events

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Results FREQUENCY MODEL Main covariate:  Isolation

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Results FREQUENCY MODEL

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Results FREQUENCY MODEL Warming events: Cooling events:  Isolation (0ºN)  Slope of Isolation (45ºN)  + Obliquity  + Eccentricity

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 1  Results INTENSITY MODEL Main covariate:  Eccentricity (- gradient) Mean value 90% quantile

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 2  Data (~atmosferic temperature) time series in Greenland

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 2  A possible periodic component ? Does it exist the 1470 cycle? ACC warm events Schulz, M. (2002) ; Rahmstorf, S (2003); Ditlevsen et al., (2005, 2007); Rohling et al., (2003), …

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 2  A possible periodic component ? In spite of the differences, a periodic component should be detected both proxies

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 2  A possible periodic component ?

CLIVAR-ES, Madrid, Feb-2009 APPLICATION 2  A possible periodic component ? profile likelihood technique

CLIVAR-ES, Madrid, Feb-2009  Conclusions  Further works Los modelos estadísticos se han aplicado satisfactoriamente para el estudio de la influencia de forzamientos externos y la detección de periodicidades en los ACC. Los resultados obtenidos indican la influencia de la Insolación terrestre en los ACC ocurridos en el pasado, así como una relación de su señal con la latitud en función de si el ACC es un calentamiento/enfriamiento. El estudio realizado permite identificar cuantitativamente la influencia de los parámetros orbitales en los ACC. Se ha detectado la presencia de una periodicidad en torno a los 1500 ±200 años en los registros obtenidos de testigos de hielo en Groenlandia. Other forcings /covariates ??? Other proxies with high resolution?

STATISTICAL ANALYSIS OF ABRUPT CLIMATE CHANGES * Instituto de Hidráulica Ambiental, IHCantabria, Universidad de Cantabria Melisa Menéndez*; I. J. Losada; F. J. Méndez; J. Grimalt; M. Canals; B. Martrat.