Flat Mirrors Consider an object placed in front of a flat mirror

Slides:



Advertisements
Similar presentations
Light, Reflection, & Mirrors
Advertisements

Notation for Mirrors and Lenses
Chapter 23 Mirrors and Lenses.
→ ℎ
Chapter 31 Images.
Chapter 23 Mirrors and Lenses.
Chapter 23 Mirrors and Lenses Conceptual questions: 4,5,10,14,15,17
Chapter 36 Image Formation.
Chapter 23 Mirrors and Lenses. Medical Physics General Physics Mirrors Sections 1–3.
Chapter 23 Mirrors and Lenses.
Chapter 23 Mirrors and Lenses. Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p.
Reflection and Refraction of Light
Chapter 23 Mirrors and Lenses.
air water As light reaches the boundary between two media,
Lecture 23 Mirrors Lens.
Reference Book is Geometric Optics.
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Chapter 25. The Reflection of Light: Mirrors
Chapter 23 Mirrors and Lenses.
Light: Geometric Optics
WAVES Optics.
Image Formation by Mirrors and Lenses
Reflection of Light Reflection and Refraction of Light Refraction of Light.
Geometric Optics Ray Model assume light travels in straight line
Chapter 23 Mirrors and Lenses.
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Lecture 14 Images Chp. 35 Opening Demo Topics –Plane mirror, Two parallel mirrors, Two plane mirrors at right angles –Spherical mirror/Plane mirror comparison.
S-95 Explain how a curved mirror, and a curved lens are different. Think in terms of image formation and in terms of what light photons do.
Lecture 14 Mirrors Chapter 23.1  23.3 Outline Flat Mirrors Spherical Concave Mirrors Spherical Convex Mirrors.
Mirrors and Lenses.
Geometric Optics Conceptual Quiz 23.
Physics 1C Lecture 26A.
Geometric Optics September 14, Areas of Optics Geometric Optics Light as a ray. Physical Optics Light as a wave. Quantum Optics Light as a particle.
Lenses and Mirrors. How does light interact with pinholes? How does light interact with lenses? –___________ How does light interact with mirrors? –___________.
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Chapter 23 Mirrors and Lenses.
Mirrors & Reflection.
Chapter 23 Mirrors and Lenses. Types of Images for Mirrors and Lenses A real image is one in which light actually passes through the image point A real.
Chapter 34 Lecture Eight: Images: II. Image Formed by a Thin Lens A thin lens is one whose thickness is small compared to the radii of curvature For a.
Last Word on Chapter 22 Geometric Optics Images in a Plane Mirror.
Chapter 36 Image Formation (Lens and Mirrors) Using the ray approximation of geometric optics, we can now study how images are formed with mirrors and.
Unit 11: Part 2 Mirrors and Lenses. Outline Plane Mirrors Spherical Mirrors Lenses The Lens Maker’s Equation Lens Aberrations.
Geometric Optics This chapter covers how images form when light bounces off mirrors and refracts through lenses. There are two different kinds of images:
 When light strikes the surface of an object  Some light is reflected  The rest is absorbed (and transferred into thermal energy)  Shiny objects,
Chapter 34 Lecture Seven: Images: I HW 3 (problems): 34.40, 34.43, 34.68, 35.2, 35.9, 35.16, 35.26, 35.40, Due Friday, Sept. 25.
In describing the propagation of light as a wave we need to understand: wavefronts: a surface passing through points of a wave that have the same phase.
Optical Density - a property of a transparent medium that is an inverse measure of the speed of light through the medium. (how much a medium slows the.
Chapter 36 Image Formation.
AP Physics IV.C Geometric Optics. Wave Fronts and Rays.
1 32 Optical Images image formation reflection & refraction mirror & lens equations Human eye Spherical aberration Chromatic aberration.
Announcements Two exams down, one to go! No HW this week. Office hours: My office hours today from 2-3 pm (or make an appointment) Always check out
Plane Mirror: a mirror with a flat surface
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Reflection of Light. Reflectance u Light passing through transparent medium is transmitted, absorbed, or scattered u When striking a media boundary, light.
Chapter 36 Image Formation 1: 1. Flat mirror 2. Spherical mirrors.
Mirror and Reflection.
Image Formation. The light rays coming from the leaves in the background of this scene did not form a focused image on the film of the camera that took.
Part 10 Optics --Mirrors and Lenses Chapter 24 Geometric Optics.
Basics Reflection Mirrors Plane mirrors Spherical mirrors Concave mirrors Convex mirrors Refraction Lenses Concave lenses Convex lenses.
Refraction & Lenses. Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent.
Light & Optics Chapters Electromagnetic Wave.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Geometric Optics AP Physics Chapter 23.
Chapter 23 Mirrors and Lenses © 2014 A. Dzyubenko.
Chapter 23: Reflection and Refraction of Light
Part 3: Optics (Lenses and Mirrors)
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
Presentation transcript:

Flat Mirrors Consider an object placed in front of a flat mirror Object O is placed a distance p in front of the mirror (p = object distance) Light reflecting from mirror appears to originate at point I An image of object O is formed at a distance q behind the mirror (q = image distance) It is a virtual image (light does not really converge there) When light actually converges at an image point, it is a real image (can be projected on a screen) We can use (at least 2) rays to determine the image orientation and position Notice p = q for a flat mirror Image is upright and virtual

Flat Mirrors The height h of the object equals the image height h’ Lateral magnification M: General definition for any type of mirror For flat mirrors, M = 1 “Magnification” can mean enlargement or reduction in size in optics A flat mirror also produces an apparent left – right reversal A waving left hand appears to be a waving right hand in the mirror

Example Problem #23.1 Does your bathroom mirror show you older or younger than your actual age? Compute an order-of-magnitude estimate for the age difference, based on data that you specify. Solution: Class interactive – Solution will be determined in class

Concave Spherical Mirrors Consider light from an object O striking a spherical concave mirror If rays diverge at small angles, they all reflect through same image point Large diverging angles mean rays intersect principle axis at different points, resulting in a blurred image Geometry of concave mirrors (from yellow and blue similar triangles)

Concave Spherical Mirrors Additional triangle geometry yields the mirror equation: If an object is very far from the mirror, then 1 / p ≈ 0 and q ≈ R / 2 In this case, the image point is called the focal point F and the image distance q is called the focal length f = R / 2 Note that focal point  focus point The mirror equation can be written in terms of focal length:

Convex Spherical Mirrors Geometry of a convex mirror We can use the same mirror equation as for concave mirrors, but we just need to use a particular sign convention for each quantity in the equation

Sign Conventions for Mirrors Also, R > 0 (R < 0) for concave (convex) mirrors

Ray Diagrams for Concave Mirrors

Ray Diagrams for Convex Mirrors Note that the sideview mirror on the passenger side of a car is a convex mirror (hence the warning given on the mirror)

Example Problem #23.16 A convex spherical mirror with a radius of curvature of 10.0 cm produces a virtual image one-third the size of the real object. Where is the object? Solution (details given in class): 10.0 cm in front of the mirror

Example Problem #23.19 A spherical mirror is to be used to form an image, five times as tall as an object, on a screen positioned 5.0 m from the mirror. Describe the type of mirror required. Where should the mirror be positioned relative to the object? Solution (details given in class): Concave 1.0 m in front of the mirror

Images Formed by Refraction Consider light from object O refracting at a spherical surface between 2 transparent media From Snell’s law and geometry: Note that real images are formed on the side opposite that of the incident light

Images Formed by Refraction If the refracting surface is flat, R   and we get: Now the (virtual) image is on the same side of the surface as the object

Interactive Example Problem: Lens Design 101 Animation and solution details given in class. (PHYSLET Physics Exploration 34.3, copyright Pearson Prentice Hall, 2004)

Example Problem #23.25 A transparent sphere of unknown composition is observed to form an image of the Sun on its surface opposite the Sun. What is the refractive index of the sphere material? Solution (details given in class): 2.00

Thin Lenses A thin lens forms an image by refraction of light Has 2 refracting surfaces Examples of thin lenses shown at right Lenses in group (a) converge parallel rays to a focal point on the opposite side of the lens Lenses in group (b) diverge parallel rays so they appear to originate from a focal point on the same side of the lens (converging lens) (diverging lens)

Geometry of Thin Lenses Magnification by a lens Thin–lens equation Lens maker’s equation (same as for a mirror) (same as for a mirror) ( f = focal length in air) ( n = index of refraction of the lens material) (R1 (R2) = radius of curvature of front (back) surface)

Sign Conventions for Thin Lenses

Ray Diagrams for Thin Lenses Converging lenses

Ray Diagrams for Thin Lenses Diverging lenses

Example Problem #23.35 A certain LCD projector contains a single thin lens. An object 24.0 mm high is to be projected so that its image fills a screen 1.80 m high. The object-to-screen distance is 3.00 m. (a) Determine the focal length of the projection lens. (b) How far from the object should the lens of the projector be placed in order to form the image on the screen? Solution (details given in class): (b) 39.5 mm (a) 39.0 mm

Interactive Example Problem: Building a Converging Lens Animation and solution details given in class. (PHYSLET Physics Problem 35.11, copyright Pearson Prentice Hall, 2004)

Combinations of Thin Lenses If 2 thin lenses are used to form an image, use the following procedure: The image produced by the first lens is calculated as though the second lens were not present The image formed by the first lens is treated as the object for the second lens The image formed by the second lens is the final image of the system The overall magnification is the product of the magnifications of the separate lenses This procedure can be extended to 3 or more lenses

Example Problem #23.40 An object is placed 20.0 cm to the left of a converging lens of focal length 25.0 cm. A diverging lens of focal length 10.0 cm is 25.0 cm to the right of the converging lens. Find the position and magnification of the final image. Solution (details given in class): Position = 9.26 cm in front of the 2nd lens Magnification = +0.370

Example Problem #23.50 Front of mirror Back of mirror Back of lens Front of lens The object shown above is midway between the lens and the mirror. The mirror’s radius of curvature is 20.0 cm, and the lens has a focal length of –16.7 cm. Considering only the light that leaves the object and travels first towards the mirror, locate the final image formed by this system. Is the image real or virtual? Is it upright or inverted? What is the overall magnification of the image? Solution (details given in class): The image is virtual, upright, located 25.3 cm behind the mirror, with an overall magnification of +8.05.

HW Problems #23.51, 23.59 #23.51: #23.59:

Aberrations Spherical aberration Chromatic aberration Light passing through lens at different distances from the principal axis is focused at different points Apertures are used to help narrow the incoming beam of light Chromatic aberration Different wavelengths of light refracted by a lens focus at different points Can be reduced by using combination of converging and diverging lenses