Angular Momenta, Geometric Phases, and Spin-Orbit Interactions of Light and Electron Waves Konstantin Y. Bliokh Advanced Science Institute, RIKEN, Wako-shi,

Slides:



Advertisements
Similar presentations
Start EM Ch.5: Magnetostatics finish Modern Physics Ch.7: J=L+S Methods of Math. Physics, Thus. 24 Feb. 2011, E.J. Zita Magnetostatics: Lorentz Force and.
Advertisements

Electromagnetic Waves
QCD Evolution Workshop, Jefferson Lab, May 9, 2013 The Angular Momentum of Gauge Fields: The Case of Twisted Photons Andrei Afanasev The George Washington.
Durham University – Atomic & Molecular Physics group
Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) The 21 st Century COE International.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Magnetically Induced Anomalous Magnetic Moment in Massless QED Efrain J. Ferrer The University of Texas at El Paso.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Evan Walsh Mentors: Ivan Bazarov and David Sagan August 13, 2010.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Berry Phase Phenomena Optical Hall effect and Ferroelectricity as quantum charge pumping Naoto Nagaosa CREST, Dept. Applied Physics, The University of.
The quantum AHE and the SHE The persistent spin helix
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
P460 - Spin1 Spin and Magnetic Moments Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Spin and addition of angular momentum
Berry phase effects on Electrons
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Lecture 13 Space quantization and spin (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed.
Lecture 22 Spin-orbit coupling
Department of Electronics Nanoelectronics 11 Atsufumi Hirohata 12:00 Wednesday, 18/February/2015 (P/L 006)
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
Chapter 41 Atomic Structure
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Xiangdong Ji University of Maryland/SJTU
The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.
Geometric Spin Hall Effect of Light Andrea Aiello, Norbert Lindlein, Christoph Marquardt, Gerd Leuchs MPL Olomouc, June 24, 2009.
ATOMIC PHYSICS Dr. Anilkumar R. Kopplkar Associate Professor
Berry Phase Effects on Electronic Properties
Spin Electronic charge in motion - A current loop behaves as a magnetic dipole and has a magnetic moment. - Note the current direction is opposite to the.
6.852: Distributed Algorithms Spring, 2008 April 1, 2008 Class 14 – Part 2 Applications of Distributed Algorithms to Diverse Fields.
Ch ; Lecture 26 – Quantum description of absorption.
For spin  ½ S =   ·p=H Helicity “ handedness ” For a moving particle state, its lab frame velocity defines an obvious direction for quantization mssmss.
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
Ch4 Fine structure of atoms Magnetic moments Spin of the electron Stern-Gerlach experiment Spectrum of the alkali atoms Spin-orbit coupling (interaction)
The inclusion of fermions – J=1/2 particles
Physics 541 A quantum approach to condensed matter physics.
Lecture 22 Spin-orbit coupling. Spin-orbit coupling Spin makes an electron act like a small magnet. An electron orbiting around the nucleus also makes.
Topological Insulators
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel Nonlinear.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
04/10/2015PHY 712 Spring Lecture 301 PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 30: Finish reading Chap. 14 – Radiation from.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Relativistic Quantum Mechanics
LASER PHYSICS 2013 PRAGUE, CZECH REPUBLIC
Department of Electronics
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Perturbation Theory Lecture 2 Books Recommended:
May , JLab, Newport News, VA, USA
Chapter III Dirac Field Lecture 2 Books Recommended:
Qian Niu 牛谦 University of Texas at Austin 北京大学
Chapter V Interacting Fields Lecture 1 Books Recommended:
Fundamentals of Quantum Electrodynamics
Handout 9 : The Weak Interaction and V-A
Stationary Perturbation Theory And Its Applications
Perturbation Theory Lecture 2 continue Books Recommended:
Spin PHY
Gauge structure and effective dynamics in semiconductor energy bands
Announcements Exam Details: Today: Problems 6.6, 6.7
Hydrogen relativistic effects II
Localized Photon States Here be dragons
Elm Field Quanta: Nature of Photons
Addition of Angular Momentum
American Physical Society
Presentation transcript:

Angular Momenta, Geometric Phases, and Spin-Orbit Interactions of Light and Electron Waves Konstantin Y. Bliokh Advanced Science Institute, RIKEN, Wako-shi, Saitama, Japan In collaboration with: Y. Gorodetski, A. Niv, E. Hasman (Israel); M. Alonso (USA), E. Ostrovskaya (Australia), A. Aiello (Germany), M. R. Dennis (UK), F. Nori (Japan)

Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

Angular momentum of light 2. Extrinsic orbital AM (trajectory) kckckckc rcrcrcrc 3. Intrinsic orbital AM (vortex) 1. Intrinsic spin AM (polarization)

Different mechanical action of the SAM and OAM on small particles: O’Neil et al., PRL 2002; Garces-Chavez et al., PRL 2003 spinning motion orbital motion Angular momentum: Spin and orbital

Geometric phase2D: AM-rotation coupling: Coriolis / angular-Doppler effect3D:

Φ C Geometric phase dynamics, S :  Berry connection, curvature (parallel transport) geometry, E :

Rytov, 1938; Vladimirskiy, 1941; Ross, 1984; Tomita, Chiao, Wu, PRL 222  Spin-orbit Lagrangian and phase  SOI Lagrangian from Maxwell equations Bliokh, 2008  for Dirac equation Berry phase:

Liberman & Zeldovich, PRA 1992; Bliokh & Bliokh, PLA 2004, PRE 2004; Onoda, Murakami, Nagaosa, PRL 2004  ray equations (equations of motion) + 2222 Spin-Hall effect of light

Berry phase Spin-Hall effect Anisotropy Bliokh et al., Nature Photon Spin-Hall effect of light

Fedorov, 1955; Imbert, 1972; …… Onoda et al., PRL 2004; Bliokh & Bliokh, PRL 2006; Hosten & Kwiat, Science 2008 Imbert  Fedorov transverse shift Spin-Hall effect of light

geometry, phase: dynamics, AM: Spin-Hall effect of light

Remarkably, the beam shift and accuracy of measurements can be enormously increased using the method of quantum weak measurements: Angstrom accuracy! Spin-Hall effect of light

Orbit-orbit interaction and phase Φ C  OOI Lagrangian 2222  Bliokh, PRL 2006; Alexeyev, Yavorsky, JOA 2006; Segev et al., PRL 1992; Kataevskaya, Kundikova, 1995  Berry phase

Orbital-Hall effect of light  vortex-depndent shifts and orbit-orbit interaction 01 2 –1–1–1–1 –2–2–2–2 Bliokh, PRL 2006 Fedoseyev, Opt. Commun. 2001; Dasgupta & Gupta, Opt. Commun. 2006

Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

Angular momentum of light  total AM = OAM +SAM?  z -components and paraxial eigenmodes:  - polarization, l - vortex

“the separation of the total AM into orbital and spin parts has restricted physical meaning.... States with definite values of OAM and SAM do not satisfy the condition of transversality in the general case.” A. I. Akhiezer, V. B. Berestetskii, “Quantum Electrodynamics” (1965)  transversality constraint: 3D  2D Nonparaxial problem 1 though

“in the general nonparaxial case there is no separation into ℓ -dependent orbital and  -dependent spin part of AM” S. M. Barnett, L. Allen, Opt. Commun. (1994) Nonparaxial problem 2  nonparaxial vortex spin-to-orbital AM conversion?.. Y. Zhao et al., PRL (2007) though

Spin-dependent OAM and position signify the spin-orbit interaction (SOI) of light : (i) spin-to-orbital AM conversion, (ii) spin Hall effect.  spin-dependent position M.H.L. Pryce, PRSLA (1948), etc. Modified AM and position operators  projected SAM and OAM cf. S.J. van Enk, G. Nienhuis, JMO (1994) compatible with transversality:

Modified AM and position operators Modified operators exhibit non-canonical commutation relations: But they correspond to observable values and are transformed as vectors: cf. S.J. van Enk, G. Nienhuis (1994); I. Bialynicki-Birula, Z. Bialynicka-Birula (1987), B.-S. Skagerstam (1992), A. Berard, H. Mohrbach (2006)

Helicity representation 3D  2D reduction and diagonalization:  all operators become diagonal ! cf. I. Bialynicki-Birula, Z. Bialynicka-Birula (1987), B.-S. Skagerstam (1992), A. Berard, H. Mohrbach (2006)  Berry connection

Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

Bessel beams in free space  mean values  field  Berry phase The spin-to-orbit AM conversion in nonparaxial fields originates from the Berry phase associated with the azimuthal distribution of partial waves.  SAM and OAM for Bessel beam

Quantization of caustics  quantized GO caustic: fine SOI splitting !  spin-dependent intensity

Plasmonic experiment Y. Gorodetski et al., PRL (2008)  circular plasmonic lens generates Bessel modes

Spin and orbital Hall effects  orbital and spin Hall effects of light  azimuthally truncated field (symmetry breaking along x ) B. Zel’dovich et al. (1994), K.Y. Bliokh et al. (2008)

Plasmonic experiment K. Y. Bliokh et al., PRL (2008) Plasmonic half-lens produces spin Hall effect:

Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

Angular momentum of electron 2. Extrinsic orbital AM kckckckc rcrcrcrc 1. Spin AMkk ‘non-relativistic’ 3. Intrinsic orbital AM ? ‘relativistic’

Scalar electron vortex beams

Murakami, Nagaosa, Zhang, Science 2003  equations of motion Orbital-Hall effect for electrons Bliokh et al., PRL 2007

Scalar electron vortex beams

Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

Bessel beams for Dirac electron  plane wave  polarization bi-spinor  Dirac equation: E > 0E > 0 E < 0E < 0 cross- terms cross- terms  spinor in the rest frame

Bessel beams for Dirac electron  spin-dependent intensity  SOI strength  spectrum Bliokh, Dennis, Nori, arXiv:

Angular momentum  Foldy-Wouthhuysen transformation  projector onto E>0 subspace E > 0E > 0 E < 0E < 0 cross- terms cross- terms  OAM and SAM for Bessel beams Bliokh, Dennis, Nori, arXiv:

Magnetic moment for Dirac electron  magnetic moment from current  operator !  final result slightly differs from Gosselin et al. (2008); Chuu, Chang, Niu, (2010)

Spin and orbital AM of light, geometric phase, spin- and orbital-Hall effects of light General theory for nonparaxial optical fields: modified SAM, OAM, and position operators. Bessel-beams example, spin-orbit splitting of caustics and Hall effects Electron vortex beams, AM of electron, orbital-Hall effect. Relativistic nonparaxial electron: Bessel beams from Dirac equation General theory of SAM, OAM, position, and magnetic moment of Dirac electron.

THANK YOU!