Author: Cliff B. Davis Evaluation of Fluid Conduction and Mixing Within a Subassembly of the Actinide Burner Test Reactor.

Slides:



Advertisements
Similar presentations
OVERVIEW - RELAP/SCDAPSIM
Advertisements

Hongjie Zhang Purge gas flow impact on tritium permeation Integrated simulation on tritium permeation in the solid breeder unit FNST, August 18-20, 2009.
INRNE-BAS MELCOR Pre -Test Calculation of Boil-off test at Quench facility 11th International QUENCH Workshop Forschungszentrum Karlsruhe (FZK), October.
Institute of Energy and Sustainable Development Improvement of a Two-Dimensional (2D) Borehole Heat Exchanger (BHE) Model Miaomiao He, Simon Rees, Li Shao.
Lesson 17 HEAT GENERATION
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Relevant Thermal-Hydraulic Aspects in the Design of the RRR A. Doval, C. Mazufri F.P. Moreno Bariloche, Rio Negro, Argentina.
Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.
UNIVERSITÀ DI PISA GRUPPO DI RICERCA NUCLEARE – SAN PIERO A GRADO (GRNSPG) Any reproduction, alteration, transmission to any third party or publication.
Thermal-Hydraulic Transient Analysis of the Missouri University Research Reactor (MURR) TRTR Annual Meeting September 17-20, 2007 Dr. Robert C. Nelson1,
EUROTRANS – DM1 RELAP5 Model Evaluation with SIMMER-III Code and Preliminary Transient Analysis for EFIT Reactor WP5.1 Progress Meeting KTH / Stockholm,
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with RELAP5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
HTTF Analyses Using RELAP5-3D Paul D. Bayless RELAP5 International Users Seminar September 2010.
EUROTRANS WP 1.5 Meeting FZK – Karlsruhe, November 27-28, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 EFIT Transients Analysis with RELAP5, SIMMER-III and.
Jennifer Tansey 12/15/11. Introduction / Background A common type of condenser used in steam plants is a horizontal, two- pass condenser Steam enters.
Chapter 8 INTERNAL FORCED CONVECTION
CHE/ME 109 Heat Transfer in Electronics LECTURE 17 – INTERNAL FORCED CONVECTION FUNDAMENTALS.
CHE/ME 109 Heat Transfer in Electronics LECTURE 10 – SPECIFIC TRANSIENT CONDUCTION MODELS.
LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
WP 1.5 Progress Meeting ENEA – Bologna, Italy, May 28-30, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 Analysis of EFIT Unprotected Accidental Transients.
Fluid Dynamics and Heat Transfer in a Hartmann Flow RPI Master’s Project Proposal Timothy DePuy – 9/28/2010.
MECHANISMS OF HEAT TRANSFER
Bechtel Bettis, Inc. Bettis Atomic Power Laboratory P.O. Box 79 West Mifflin, PA International RELAP5 User’s Seminar Assessing the RELAP5-3D.
Introduction to Heat Transfer
Argonne National Laboratory 2007 RELAP5 International User’s Seminar
Thermal hydraulic analysis of ALFRED by RELAP5 code & by SIMMER code G. Barone, N. Forgione, A. Pesetti, R. Lo Frano CIRTEN Consorzio Interuniversitario.
Thermal Hydraulic Simulation of a SuperCritical-Water-Cooled Reactor Core Using Flownex F.A.Mngomezulu, P.G.Rousseau, V.Naicker School of Mechanical and.
THERMAL HYDRAULIC ANALYSIS FOR THE OREGON STATE REACTOR USING RELAP5-3D Wade R. Marcum Brian G. Woods 2007 TRTR Conference September 19, 2007.
1 Calorimeter Thermal Analysis with Increased Heat Loads September 28, 2009.
LEADER, Task 5.5 ETDR Transient Analyses with SPECTRA Code LEADER Project JRC, Petten, February 26, 2013 M.M. Stempniewicz NRG-22694/
Beta F90 Version Status Nolan Anderson Date: July 26, 2011.
Finite Element Analysis of Radiofrequency Ablation Abirvab Deb- BME M.Eng ‘14 Brice Lekavich- BME M.Eng ‘14 Cristian Vilorio- BME M.Eng ‘14.
Department of Mechanical and Nuclear Engineering Reactor Dynamics and Fuel Management Group Comparative Analysis of PWR Core Wide and Hot Channel Calculations.
Mathematical Equations of CFD
Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D 2010 IRUG Meeting Cliff Davis.
Development of a RELAP5-3D thermal-hydraulic model for a Gas Cooled Fast Reactor D. Castelliti, C. Parisi, G. M. Galassi, N. Cerullo (San Piero A Grado.
Fluid Dynamics and Heat Transfer in a Hartmann Flow RPI Master’s Project Update Timothy DePuy – 11/15/2010.
IAEA Meeting on INPRO Collaborative Project “Performance Assessment of Passive Gaseous Provisions (PGAP)” December, 2011, Vienna A.K. Nayak, PhD.
Multipliers for Single-Phase Heat Transfer Coefficients in RELAP5-3D 2011 IRUG Meeting Cliff Davis.
Specify domain’s starting fluid temperature on the Initial pane Porewater temperature is 40 °C.
ATLAS Calorimeter Argon Gap Convection Test Bed April 25,
Silesian University of Technology in Gliwice Inverse approach for identification of the shrinkage gap thermal resistance in continuous casting of metals.
Heat transfer gradient through the reactor
Convection: Internal Flow ( )
LEADER Project Analysis of Representative DBC Events of the ETDR with RELAP5 and CATHARE Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble.
Analysis of Representative DEC Events of the ETDR with RELAP5 LEADER Project: Task 5.5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
Muktar Bashir1 and Yassir Makkawi2
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
TS/CV/DC CFD Team CFD Study of the L3 Thermal Environment Sara C. Eicher
Porewater temperature is 40°C Specify domain’s starting fluid temperature on the Initial pane.
Italian National Agency for New Technologies, Energy and Environment Advanced Physics Technology Division Via Martiri di Monte Sole 4, Bologna, Italy.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT Design WP5.1 Progress Meeting AREVA / Lyon, October 10-11, 2006 G. Bandini, P. Meloni, M. Polidori.
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2 Tutorial #1 WRF#14.12, WWWR #15.26, WRF#14.1, WWWR#15.2, WWWR#15.3, WRF#15.1, WWWR.
Author: Cliff B. Davis Verification and Validation of Corrected Versions of RELAP5 for ATR Reactivity Analyses.
Evaluation of a rate form of the equation of state L.H. Fick, P.G. Rousseau, C.G. du Toit North-West University Energy Postgraduate Conference 2013.
ERMSAR 2012, Cologne March 21 – 23, 2012 Post-test calculations of CERES experiments using ASTEC code Lajos Tarczal 1, Gabor Lajtha 2 1 Paks Nuclear Power.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
Convection Currents and the Mantle. The Heat of the Earth Earth’s outer core is nearly as hot as the surface of the sun.
Chapter 8: Internal Forced Convection
Internal Flow: General Considerations. Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume.
Algirdas Kaliatka, Audrius Grazevicius, Eugenijus Uspuras
International Topical Meeting on Nuclear Reactor Thermal Hydraulics
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Analysis of Reactivity Insertion Accidents for the NIST Research Reactor Before and After Fuel Conversion J.S. Baek, A. Cuadra, L-Y. Cheng, A.L. Hanson,
Fundamentals of Heat Transfer
Internal Flow: General Considerations
I. Di Piazza (ENEA), R. Marinari, N. Forgione (UNIPI), F
Fundamentals of Heat Transfer
Egyptian Atomic Energy Authority (EAEA), Egypt
Presentation transcript:

Author: Cliff B. Davis Evaluation of Fluid Conduction and Mixing Within a Subassembly of the Actinide Burner Test Reactor

2/15 Introduction RELAP5-3D is being considered as the thermal- hydraulic system code to support the sodium- cooled Actinide Burner Test Reactor (ABTR) An evaluation* was performed to determine if existing code models could be used to represent important features of the ABTR –Fluid heat conduction (axial and radial) –Radial subchannel mixing * This work was presented at NURETH-12

3/15 The EBR-II XX09 subassembly was used as a surrogate for the ABTR

4/15 Two RELAP5 models were used 1D2D

5/15 The control system was used to simulate fluid heat conduction and mixing The control system provides a generalized capability to evaluate algebraic and differential equations using standard mathematical operations and functions that can interact with the code’s hydrodynamic calculations The control system was used to calculate the heat transfer associated with heat conduction and radial mixing The calculated amount of heat was then added to or subtracted from the various control volumes in the model

6/15 Fluid heat conduction and mixing were represented as D = f ( k, geometry) Heat conduction: Radial mixing: = effective transverse mass flux / axial mass flux for the XX09 subassembly

7/15 The 1D model was used to determine the effects of axial conduction for a wide range of steady-state conditions

8/15 Axial conduction affected the temperature profile at very low flows Without axial conductionWith axial conduction in the fluid Results were consistent with theory The effects of axial conduction in the heat structures were smaller than those in the fluid

9/15 The 1D model was used to simulate a loss-of-flow transient Transient was for a loop-type reactor and simulated a loss of primary pumps, scram, and a pony motor trip near 330 s Inlet flow was assumed to completely stagnate for 40 s to maximize the effects of axial conduction

10/15 The effects of axial conduction during the transient were small The results of axial conduction were exaggerated by the assumption of complete flow stagnation and the lack of natural circulation in the 1D model Maximum clad temperatureFluid temperature profile

11/15 The radial variation in temperature was large at high flow rates Fluid temperatures at the top of the core Results are from the 2D model without radial heat transport The outer ring is cooler because the subassembly wall is unheated Buoyancy effects flattened the temperature profile at low flows

12/15 Radial heat transport flattened the temperature profiles at high flows but did not significantly affect the temperature profiles at low flows 100% power and flow The effect of radial mixing was larger than conduction for 100% flow, but was smaller for <10% flow The 1D model significantly underpredicts the maximum fluid temperature at high flows 1% power and flow

13/15 The 2D nodalization and radial fluid conduction affected transient results The 2D models predicted significant internal recirculation which lowered the peak cladding temperature Radial heat conduction reduced the flow at the top of the core The effects of radial mixing were small because of the low axial flow rates during the transient Maximum cladding temperatureFluid velocity at the top of the core

14/15 Conclusions The effects of axial conduction in the fluid are not important for most ABTR applications Subchannel effects are important in the calculation of cladding temperature –The 1D model underpredicted the maximum temperature during normal operation and overpredicted the maximum value during the loss-of-flow transient The effects of radial conduction in the fluid are important in the calculation of cladding temperature The effects of radial mixing in the fluid are important at high flow rates

15/15 Conclusions (cont’d) The control system model can adequately simulate the effects of heat conduction in the fluid and radial mixing between subchannels –The use of the control system places a burden on the user in terms of the amount of work required to represent the phenomena –Internal code models would be much easier to use –Because of the finite number of control variables available, the approach can only be used at about 430 junctions –Internal code models that calculate the effects of heat conduction and mixing in the fluid should be added to RELAP5-3D to support analyses of the ABTR