Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

Slides:



Advertisements
Similar presentations
Nuclear Reactor Theory, JU, First Semester, (Saed Dababneh).
Advertisements

Controlled Fission  235U + n  X + Y + (~2.4)n
Fynan, Mar, Sirajuddin Sodium-Cooled Fast Reactor First Preliminary Report: Fuel Composition Analysis.
Euradwaste04 – Partitioning and transmutation - Panel discussion Transmutation and partitioning Fast neutron spectrum Critical Heterogeneous Homogeneous.
Idaho National Engineering and Environmental Laboratory SCWR Preliminary Safety Considerations Cliff Davis, Jacopo Buongiorno, INEEL Luca Oriani, Westinghouse.
SABR REACTOR CORE & TRITIUM BREEDING BLKT W. M. Stacey Georgia Tech September, 2009.
Lesson 17 HEAT GENERATION
Author: Cliff B. Davis Evaluation of Fluid Conduction and Mixing Within a Subassembly of the Actinide Burner Test Reactor.
PHYSICS DESIGN OF 30 MW MULTI PURPOSE RESEARCH REACTOR Archana Sharma Research Reactor Services Division BHABHA ATOMIC RESEARCH CENTRE, INDIA.
Safety analysis of supercritical-pressure light-water cooled reactor with water rods Yoshiaki Oka April 2003, GIF SCWR Mtg. at Madison.
Preliminary T/H Analyses for EFIT-MgO/Pb Reactor Design WP1.5 Progress Meeting KTH / Stockholm, May 22-23, 2007 G. Bandini, P. Meloni, M. Polidori Italian.
Survey of Space Nuclear Power Options. Dr. Andrew Kadak And Peter Yarsky MIT
SABR FUEL CYCLE C. M. Sommer, W. M. Stacey, B
University of South Carolina FCR Laboratory Dept. of Chemical Engineering By W. K. Lee, S. Shimpalee, J. Glandt and J. W. Van Zee Fuel Cell Research Laboratory.
1 IL SISTEMA DI CALCOLO MODULARE ERANOS (EUROPEAN REACTOR ANALYSIS OPTIMIZED SYSTEM)
Nuclear Reactors Chapter 4
Multi-physics coupling Application on TRIGA reactor Student Romain Henry Supervisors: Prof. Dr. IZTOK TISELJ Dr. LUKA SNOJ PhD Topic presentation 27/03/2012.
Development of the FW Mobile Tiles Concept Mohamed Sawan, Edward Marriott, Carol Aplin University of Wisconsin-Madison Lance Snead Oak Ridge National Laboratory.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Nuclear and Energy Technologies.
Idaho National Engineering and Environmental Laboratory Analysis of the SCWR Core with Water Rods Cliff Davis, Jacopo Buongiorno, INEEL Larry Conway, Westinghouse.
Argonne National Laboratory 2007 RELAP5 International User’s Seminar
INSTANT/PHISICS – RELAP5 coupling A. Epiney, C. Rabiti, Y. Wang, J. Cogliati, T. Grimmett, P. Palmiotti.
Thermal Hydraulic Simulation of a SuperCritical-Water-Cooled Reactor Core Using Flownex F.A.Mngomezulu, P.G.Rousseau, V.Naicker School of Mechanical and.
RIC 2009 Thermal Hydraulics & Severe Accident Code Development & Application Ghani Zigh USNRC 3/12/2009.
Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Fission Q for 235 U + n  236 U is MeV. Table 13.1 in Krane:
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Fission 1/ v 235 U thermal cross sections  fission  584 b. 
USE OF VVER SPENT FUELS IN A THORIUM FAST BREEDER P. Vértes, KFKI Atomic Energy Research Institute, Budapest, Hungary 17 th AER Symposium Yalta,
High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory Nuclear Engineering Division.
THERMAL HYDRAULIC ANALYSIS FOR THE OREGON STATE REACTOR USING RELAP5-3D Wade R. Marcum Brian G. Woods 2007 TRTR Conference September 19, 2007.
Types of reactors.
3D Coupled Fault Modelling for the Gas- cooled Fast Reactor Jason Dunstall KNOO PhD Student (EPSRC Funded) Applied Modelling and Computation Group (AMCG)
MA and LLFP Transmutation Performance Assessment in the MYRRHA eXperimental ADS P&T: 8th IEM, Las Vegas, Nevada, USA November 9-11, 2004 E. Malambu, W.
Lead Technology Task 6.2 Materials for mechanical pump for HLM reactors M. Tarantino, I. Di Piazza, P. Gaggini Work Package Meeting Karlsruhe, November.
3. Core Layout The core loading pattern for the proliferation resistant advanced transuranic transmuting design (PRATT) was optimized to obtain an even.
Advanced Neutronics: PHISICS project C. Rabiti, Y. Wang, G. Palmiotti, A. Epiney, A. Alfonsi, H. Hiruta, J. Cogliati, T. Grimmett.
Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA.
FAST MOLTEN SALT REACTOR –TRANSMUTER FOR CLOSING NUCLEAR FUEL CYCLE ON MINOR ACTINIDES A.Dudnikov, P.Alekseev, S.Subbotin.
RELAP5 Analyses of a Deep Burn High Temperature Reactor Core
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh). 1 Controlled Fission Note that  is greater than 2 at thermal energies and almost 3 at.
Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack Brahmananda Chakraborty Bhabha Atomic Research Centre, India.
ERMSAR 2012, Cologne March 21 – 23, 2012 Analysis of Corium Behavior in the Lower Plenum of the Reactor Vessel during a Severe Accident Rae-Joon Park,
Characteristics of Transmutation Reactor Based on LAR Tokamak Neutron Source B.G. Hong Chonbuk National University.
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
СRCD NSC KIPT DiFis 2.0 – 3D Finite Element Neutron Kinetic Code A.I. Zhukov and A.M. Abdullayev NSC Kharkov Institute of Physics and Technology September.
UCN Source at the NCSU PULSTAR Reactor Bernard Wehring and Albert Young North Carolina State University International Workshop on Neutron-Antineutron Transition.
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
Italian National Agency for New Technologies, Energy and Environment Advanced Physics Technology Division Via Martiri di Monte Sole 4, Bologna, Italy.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT Design WP5.1 Progress Meeting AREVA / Lyon, October 10-11, 2006 G. Bandini, P. Meloni, M. Polidori.
D J Coates, G T Parks Department of Engineering, University of Cambridge, UK 3 rd Year PhD student Actinide Breeding and Reactivity Variation in a Thermal.
COMPARATIVE ANALYSIS OF DIFFERENT METHODS OF MODELING OF MOST LOADED FUEL PIN IN TRANSIENTS Y.Ovdiyenko, V.Khalimonchuk, M. Ieremenko State Scientific.
NEAR-COMPLETE TRANSURANIC WASTE INCINERATION IN THORIUM-FUELLED LIGHT WATER REACTORS Ben Lindley.
COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING MENB INTRODUCTION TO NUCLEAR ENGINEERING GROUP ASSIGNMENT GROUP MEMBERS: MOHD DZAFIR.
RRC “Kurchatov Institute”, Russia NEUTRONIC AND THERMAL HYDRAULIC CODE PACKAGE PERMAK-3D/SC-1 IN 3D PIN-BY-PIN ANALYSIS OF THE VVER CORE P.А. Bolobov,
Date of download: 9/26/2017 Copyright © ASME. All rights reserved.
ISIS TS1 Project: Target Design and Analysis
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Nodal Methods for Core Neutron Diffusion Calculations
Analysis of Reactivity Insertion Accidents for the NIST Research Reactor Before and After Fuel Conversion J.S. Baek, A. Cuadra, L-Y. Cheng, A.L. Hanson,
Modified Design of Aries T-Tube Divertor Concept
Jordan University of Science and Technology
Pebble Bed Reactors for Once Trough Nuclear Transmutation
LOW-POWER RESEARCH REACTOR FOR EDUCATION AND TRAINING
Safety Demonstration of Advanced Water Cooled Nuclear Power Plants
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
I. Di Piazza (ENEA), R. Marinari, N. Forgione (UNIPI), F
NUCLEAR HYDROGEN PRODUCTION :
Cross Section Versus Recipes for Fuel Cycle Transition Analysis
Egyptian Atomic Energy Authority (EAEA), Egypt
Presentation transcript:

Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory

1 Challenges of SCWR design in Neutronics Axial power shape controlAxial power shape control –Large coolant density variation axially –Smaller control rod worth Radioactive waste controlRadioactive waste control –Fast spectrum of SCWR can burn higher actinides Neutronics code systemNeutronics code system –Multi-group, 3 dimensional, T/H coupling system –HTC correlation in supercritical conditions Other issuesOther issues –Proliferation resistance and economy

2 Argonne National Laboratory Mixed Spectrum SCWR Concept Advanced spectrum control is needed to maximize merits of SCWRAdvanced spectrum control is needed to maximize merits of SCWR Mixed-spectrum supercritical water reactorMixed-spectrum supercritical water reactor –Separation fast and thermal spectrum radially Smaller power peaking factor and easier reactivity controlSmaller power peaking factor and easier reactivity control –Multi-purposed reactor Maximize thermal efficiency and economy of SCWR concept without additional design featuresMaximize thermal efficiency and economy of SCWR concept without additional design features Electric production and actinide Burning in fast spectral coreElectric production and actinide Burning in fast spectral core

3 Argonne National Laboratory MS 2 core

4 Argonne National Laboratory Comparison of SCWR Assemblies MS 2 assembly SCLWR-H and INEEL SCLWR-H old

5 Argonne National Laboratory Comparison of SCWR Designs SCLWR-H 1) SCFR-H 1) INEEL 2) MS 2 PWR Inner core Outer core Thermal power, MW Number of fuel assembly Active height, cm Power density, MW/m 3 Fuel material Cladding material Fuel radius, cm Cladding thickness, cm Fuel pitch, cm P/D of fuel cell Assembly Shape Number of fuel rods Assembly pitch, cm UO 2 Ni-Alloy hexagonal MOXNi-Alloy hexagonal ODS steel square MOXNi-Alloy hexagonal MOXNi-Alloy hexagonal hexagonal UO 2 Zr square Inlet temperature (in/out), o C 280/508280/526280/500387/553280/387300/332 Coolant mass flow rate, kg/s Coolant velocity (in/out),m/sec 2.5 / / / / / / / / / / / High Temperature Supercritical thermal reactor (O. Oka, "Design Concept of Once-Through Cycle Supercritical-Pressure Light Water Reactors," SCR-2000, Tokyo (2000) 2. INEEL design (tentative)

6 Argonne National Laboratory WIMS8/SOLTRAN Code System WIMS8 used for lattice calculationsWIMS8 used for lattice calculations Zonal cross sections are functionalized by state parameters,Zonal cross sections are functionalized by state parameters, SOLTRAN used for core calculationsSOLTRAN used for core calculations –Interface current nodal formulation of diffusion and simplified P 2 equation in multi-dimensional hex-Z and X-Y-Z geometry –Multi-group, microscopic depletion –Single-phase heat balance equation for T/H feedback –HTC is updated by DB-, Modified DB-, and Jackson’s correlations

7 Argonne National Laboratory MS 2 Core Analysis (1) BurnerBurner –Inner core : MOX Th/TRU/U = 32.5/15/32.5 %Th/TRU/U = 32.5/15/32.5 % Fissile fraction = 11%Fissile fraction = 11% –Outer core : MOX Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 % Fissile fraction = 6.5%Fissile fraction = 6.5% ConverterConverter –Inner core : MOX Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 % Fissile fraction = 6.5%Fissile fraction = 6.5% –Outer core : MOX Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 % Fissile fraction = 6.5%Fissile fraction = 6.5%

8 Argonne National Laboratory MS 2 Core Analysis (2) HTC = Jackson ’ s correlation

9 Argonne National Laboratory Comparison of Axial Power and Temperature Axial power distribution Axial cladding surface temperature distribution Axial coolant temperature distribution

10 Argonne National Laboratory Comparison of MS 2 Cores BurnerBurner –Heterogeneous core (higher TRU and fissile content in inner core) –40/60 % power sharing in inner/outer cores –Higher power peaking factor in inner core due to higher fissile content –Cladding temperature of outer core is much lower than criteria due to lower power peaking factor ConverterConverter –Homogeneous core (same fuel composition of inner and outer cores) –25/75 % power sharing in inner/outer cores due to coolant density difference –Higher power peaking factor in outer core, which causes higher cladding surface temperature

11 Argonne National Laboratory Conclusions and Future Works Conceptual design of MS 2 core was performedConceptual design of MS 2 core was performed –WIMS/SOLTRAN code system was developed for supercritical water reactor core analysis –Feasibility of burner and converter with mixed-spectrum SCWR was evaluated, but design optimizations are necessary Future worksFuture works –Optimize the core design for burner and converter –Fuel cycle analysis –Evaluation of waste and economics