EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

Wireless Modulation Schemes
EE359 – Lecture 10 Outline Announcements: Project proposals due this Friday at 5pm (post, link) Midterm will be Nov. 7, 6-8pm, Room TBD, no HW due.
EE359 – Lecture 10 Outline Announcements: Project proposals due today at 5pm (post, link) Midterm will be Nov. 4, 6-8pm, Room TBD, no HW due that.
EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Three Lessons Learned Never discard information prematurely Compression can be separated from channel transmission with no loss of optimality Gaussian.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 12 Feb. 24 nd, 2014.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Midterm review Introduction to adaptive.
CHAPTER 6 PASS-BAND DATA TRANSMISSION
Rohit Iyer Seshadri and Matthew C. Valenti
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
Course Summary Overview/history of wireless communications (Ch. 1)
Geometric Representation of Modulation Signals
Digital Communications Chapeter 3. Baseband Demodulation/Detection Signal Processing Lab.
Introduction to Digital Communication
EE359 – Lecture 12 Outline Combining Techniques
Combined Linear & Constant Envelope Modulation
Constellation Diagram
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE104: Lecture 23 Outline Announcements Review of Last Lecture
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
1 complex envelope of BFSK is nonlinear function of m(t) spectrum evaluation - difficult - performed using actual time averaged measurements PSD of BFSK.
EE359 – Lecture 9 Outline Linear Modulation Review
Digital Modulation Basics
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 10 Outline Average P s (P b ) MGF approach for average P s Combined average and outage P s P s due to Doppler ISI P s due to ISI.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 14 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
Shannon’s Theorem.
Modulation Techniques
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Modulation and Coding Trade-offs
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Lecture 9 Outline: AM and FM Modulation
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 12 Outline Announcements Transmit Diversity
Wireless Communication Channel Capacity
Wireless Communication Channel Capacity
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
Presentation transcript:

EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice MTs posted next week, Discussion section 11/5 will be MT review (or could move to Monday). 10/29 class will take place at usual time (no makeup 10/28) Linear Modulation Review Linear Modulation Performance in AWGN Q-Function representations Probability of error in fading Outage probability Average P s (P b )

Review of Last Lecture Capacity in Flat-Fading:  known at TX/RX l Optimal Rate and Power Adaptation l Channel Inversion and Truncated Inversion Received SNR constant; Capacity is Blog 2 (1+  ) above an outage level associated with truncation Capacity of ISI channels Water-filling of power over freq; or time and freq. 1  00  Waterfilling

Passband Modulation Tradeoffs Want high rates, high spectral efficiency, high power efficiency, robust to channel, cheap. Amplitude/Phase Modulation (MPSK,MQAM) Information encoded in amplitude/phase More spectrally efficient than frequency modulation Issues: differential encoding, pulse shaping, bit mapping. Frequency Modulation (FSK) Information encoded in frequency Continuous phase (CPFSK) special case of FM Bandwidth determined by Carson’s rule (pulse shaping) More robust to channel and amplifier nonlinearities Our focus

Amplitude/Phase Modulation Signal over ith symbol period: Pulse shape g(t) typically Nyquist Signal constellation defined by (s i1,s i2 ) pairs Can be differentially encoded M values for (s i1,s i2 )  log 2 M bits per symbol P s depends on Minimum distance d min (depends on  s ) # of nearest neighbors  M Approximate expression: l Standard/alternate Q function

Linear Modulation in Fading In fading  s and therefore P s random Performance metrics: Outage probability: p(P s >P target )=p(  <  target ) Average P s, P s : Combined outage and average P s

Outage Probability Probability that P s is above target Equivalently, probability  s below target Used when T c >>T s PsPs P s(target) Outage TsTs t or d

Main Points Linear modulation more spectrally efficient but less robust than nonlinear modulation P s approximation in AWGN: Alternate Q function useful in fading/diversity analysis In fading P s is a random variable, characterized by average value, outage, or combined outage/average Outage probability based on target SNR in AWGN. Fading significantly degrades performance