P HOTOSYNTHESIS. A UTOTROPHS Auto = self Troph = eating Organisms that can produce their own food (energy) from inorganic materials (sunlight)

Slides:



Advertisements
Similar presentations
4.2/4.3 Intro to Photosynthesis
Advertisements

PHOTOSYNTHESIS.
P HOTOSYNTHESIS. A UTOTROPHS Auto = self Troph = eating Organisms that can produce their own food (energy) from inorganic materials (sunlight)
Photosynthesis.
KEY CONCEPT All cells need chemical energy.
Photosynthesis vs. Respiration
Video Eyewitness Plant Watch video and answer the questions.
KEY CONCEPT All cells need chemical energy.
KEY CONCEPT All cells need chemical energy.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
Chapter 4: Cells and Energy
Chapter 4: Cells and Energy
Topic: Photosynthesis
Today’s Objectives Given information and/or diagrams on the process of photosynthesis, write and/or identify the equation, raw materials, sites, products,
Chemical Energy and ATP
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
1 Photosynthesis Energy & Life. 2 Autotrophs Plants and some other types of organisms that contain chlorophyll are able to use light energy from the sun.
ATP ATP Adenosine Triphosphate (ATP) - One of the principal chemical compounds that living things use to store and release energy Adenosine Triphosphate.
Chapter 8: Photosynthesis
4.3 Photosynthesis in Detail KEY CONCEPT Photosynthesis converts light energy is captured and used to build sugars that store chemical energy.
Chapter 4.1:4.2:4.3 Energy and Life
PHOTOSYNTHESIS.
PHOTOSYNTHESIS. Adenosine Triphosphate (ATP) Energy-storing compound Energy-storing compound Made up of an adenosine compound with 3 phosphate groups.
How might these 2 things be related?
Cell Energy Adapted from A. Anguiano & J. Zhen All organisms need energy to live.
4.2 Overview of Photosynthesis KEY CONCEPT The overall process of photosynthesis produces sugars that store chemical energy.
4.1 Chemical Energy & ATP 4.2 Overview of Photosynthesis 4.3 Photosynthesis in Detail CELL ENERGY.
Chemical Energy, ATP, & Photosynthesis Chapter 4 Sections 4.1, 4.2, and 4.3.
4.2 Overview of Photosynthesis KEY CONCEPT The overall process of photosynthesis produces sugars that store chemical energy.
Photosynthesis Why plants don’t “eat”.
Photosynthesis: Capturing and Converting Energy In the process of photosynthesis, plants convert the energy of sunlight into the energy in chemical bonds.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Light Dependent Reactions Photosystem –clusters of hundreds of pigments.
4.3 Photosynthesis in Detail KEY CONCEPT Photosynthesis requires a series of chemical reactions.
4.3 Photosynthesis in Detail KEY CONCEPT Photosynthesis requires a series of chemical reactions.
4.2 Overview of Photosynthesis TEKS 4B, 9B The student is expected to: 4B investigate and explain cellular processes, including homeostasis, energy conversions,
 What are the most important energy sources in foods you eat?  Carbohydrates and lipids.
Chemical Energy, ATP, & Photosynthesis Chapter 4 Sections 4.1, 4.2, and 4.3.
ADP, ATP and Photosynthesis Copyright Cmassengale.
4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy.
Prior Knowledge On your new notes for the chapter, copy and answer the following questions: Why don’t bushes or other trees grow underneath larger trees?
CHEMICAL ENERGY AND ATP Chapter 4.1. CHEMICAL ENERGY The energy used by cells is carried by ATP. You eat food because the bonds that hold those molecules.
Photosynthesis Chapter 8.
Chemical Energy and ATP
CHAPTER 4 CELLS AND ENERGY
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
4.2 Overview of Photosynthesis Key concept: All cells need chemical energy SC.912.L18.10 Connect the role of adenosine triphosphate(ATP) to energy transfer.
Independent and Dependent Reactions
9.1 & 9.2 The Need for Energy and Photosynthesis
BIOLOGY Ch. 4, Part 1 Review.
Photosynthesis.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
8-3 The Reactions of Photosynthesis
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
Nature’s energy factory! Page 89 and 90
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
Chapter 8 Cellular Energy 8.1 How Organisms Obtain Energy Autotrophs Autotrophs are organisms that obtain energy by making their own food. (sugar-glucose)
Photosynthesis in detail
The student is expected to: 4B investigate and explain cellular processes, including homeostasis, energy conversions, transport of molecules, and synthesis.
C. Photosynthesis occurs in two main stages
Chapter 8 Cellular Energy 8.1 How Organisms Obtain Energy Autotrophs Autotrophs are organisms that obtain energy by making their own food. (sugar-glucose)
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
KEY CONCEPT Photosynthesis requires a series of chemical reactions.
Presentation transcript:

P HOTOSYNTHESIS

A UTOTROPHS Auto = self Troph = eating Organisms that can produce their own food (energy) from inorganic materials (sunlight)

H ETEROTROPH Hetero = other Troph = eating Organisms that cannot make its own food. Requires organic compounds (other organisms) for its principle source of food.

C HEMICAL E NERGY AND ATP All cells use chemical energy carried by ATP- Adenosine triphosphate. Cells use ATP for functions such as building molecules and moving material through active transport.

ATP The energy carried by ATP is released when a phosphate group is removed from the molecule. ATP become ADP (Adenosine diphosphate) ADP can become ATP again through a series of chemical reactions.

ATP ATP is produced during the breakdown of carbon-based molecules. Different foods provide different amounts of ATP. Carbohydrates (glucose) can make ~ 36 molecules of ATP Lipids can make ~ 146 molecules

S PECIAL C REATURES Some organisms do not need sunlight and photosynthesis as a source of energy. Some organisms live near cracks in the ocean and never see sunlight Chemosynthesis Process by which some organisms use chemical energy instead of light energy to make energy- storing carbon-based molecules

P HOTOSYNTHETIC O RGANISMS ARE P RODUCERS. Producers – Produce the chemical energy for themselves and for other organisms. Photosynthesis – A process that captures energy from sunlight to make sugars that store chemical energy. Chlorophyll – A molecule in chloroplasts that absorb some of the energy in visible light

P HOTOSYNTHESIS IN C HLOROPLASTS Chloroplasts are in leaf cells Grana are stacks of coin-shaped membrane-enclosed compartments called thylakoids. The membranes of thylakoids contain chlorophyll and protein Stroma is the fluid that surrounds the grana inside the chloroplast.

P HOTOSYNTHESIS IN C HLOROPLASTS Light-dependent reactions 1. chlorophyll absorbs light. 2. energy is transferred to molecules that carry energy (ATP). Light-independent reactions 3. CO 2 is added to build larger molecules. Energy from the light-dependent reactions is used. 4. A molecule of simple sugar is formed. C 6 H 12 O 6 (glucose)

F IRST S TAGE : L IGHT -D EPENDENT R EACTION Capture and transfer energy. There are two photosystems involved: photosystem II and photosystem I

L IGHT -D EPENDENT R EACTION Chlorophyll and other light- absorbing molecules capture energy from sunlight. Water molecules are broken down into hydrogen ions, electrons, and oxygen gas ( waste ) Sugars are NOT MADE during this part of photosynthesis Day 1

L IGHT D EPENDENT R EACTION : P HOTOSYSTEM II AND E LECTRON T RANSPORT Chlorophyll and other light absorbing molecules absorb energy from sunlight and that energy is transferred into chloropyll. The energy is then transferred to electrons. – 1. Energy is absorbed in sunlight High energy electrons leave the chorophyll and enter the electron transport chain (a series of proteins in the thylakoid) – 2. Water molecules split – 3. Hydrogen ions transported

L IGHT D EPENDENT R EACTION : P HOTOSYSTEM I AND E NERGY -C ARRYING M OLECULES Chlorophyll and other light-absorbing molecules absorb sunlight and add it to the electrons from photosystem II 4. Energy is absorbed from sunlight. Electrons are energized. 5. NADPH produced. In photosynthesis NADPH functions like ATP. The molecules of NADPH go to light-independent reactions.

ATP P RODUCTION Final part of the light-reaction. 6. Hydrogen ion diffusion H + ions flow through the thylakoid. 7. ATP produced ATP synthase take the ions as they flow and makes ATP by adding phosphate groups to ADP.

L IGHT D EPENDENT R EACTION : P HOTOSYSTEM II AND P HOTOSYSTEM I

S UMMARY OF L IGHT -D EPENDENT R EACTIONS PRODUCTS ARE: NADPH Used later to make sugar. ATP Used later to make sugar. Oxygen Given off as a waste.

2 ND S TAGE : L IGHT I NDEPENDENT R EACTION Uses energy from the first stage to make sugar. Light-independent reactions take place ANY time that energy is available (it doesn’t need sunlight). Light-independent reactions use the NADPH and ATP made during the light-dependent reactions to make sugar.

T HE C ALVIN C YCLE Uses the NADPH and ATP from the light- dependent reaction, and CO 2 from the atmosphere to make simple sugars.

T HE C ALVIN C YCLE 1. Carbon dioxide added. CO 2 molecules are added to five-carbon molecules already in the Calvin Cycle. Six-carbon molecules are formed. 2. Three-carbon molecules formed. ATP and NADPH is used to split the six-carbon molecules into two three- carbon molecules.

T HE C ALVIN C YCLE 3. Three-carbon molecules exit. Most of the three-carbon molecules will stay IN the Calvin Cycle. ONE high energy three- carbon molecule will leave the cycle. When TWO three-carbon molecules leave the cycle, they will bond together to build a six-carbon sugar molecule. Glucose (C 6 H 12 O 6 )

T HE C ALVIN C YCLE 4. Three-carbon molecules recycled. Energy from ATP is used to change the three-carbon molecules that stayed in the cycle to five-carbon molecules. These five-carbon molecules stay in the Calvin Cycle. They are added to new CO 2 molecules that enter the cycle.

T HE C ALVIN C YCLE

S UMMARY OF L IGHT -I NDEPENDENT R EACTIONS PRODUCTS ARE: Glucose Used to store energy. NADP + Return to the light- dependent reaction. Will be changed into NADPH there. ADP Return to the light- dependent reaction. Will be changed into ATP there.

F UNCTIONS OF P HOTOSYNTHESIS Provides material for plant growth and development. Simple sugars are bonded together to form complex sugars like cellulose and starch. Starches store energy for the plant. Cellulose is a major component of the cell wall. Helps regulate the Earth’s environment. Removes CO 2 from the atmosphere.

P HOTOSYNTHETIC E QUATION 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 Light Dependent Reactions Includes Photosystem II Electron Transport Chain Photosystem I Light Independent Reactions Includes the Calvin Cycle

P HOTOSYNTHETIC E QUATION