1 Introduction to Photosynthesis Photosynthetic process converts light energy into chemical energy. Plants, algae and some types of bacteria use photosynthesis.

Slides:



Advertisements
Similar presentations
KHADIJAH HANIM BT ABDUL RAHMAN
Advertisements

Chapter 15 (part1) Photosynthesis. Implications of Photosynthesis on Evolution.
Photosynthesis. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 + 6H 2 O + 6O.
THE LIGHT DEPENDENT REACTION. OXIDATION AND REDUCTION Oxidation Is a Loss of electrons (OIL) Reduction Is a Gain of electrons (RIG) © 2010 Paul Billiet.
Photosynthesis: Life from Light and Air
Photosynthesis Energy & Life 1. Overview of Photosynthesis 2.
Where does the energy for living things come from?  Autotrophs – make their own food Plants and other organisms (like algae) can use light energy from.
THE LIGHT REACTIONS.  Begin when photons strike the photosynthetic membrane. The process can be divided into three parts. 1) Photoexcitation: absorption.
Chapter 8 Photosynthesis.
Autotrophs Organisms capture and store free energy for use in biological processes.
Photosynthesis Photosynthesis is the process of converting light energy to chemical energy. Plants, algae, cyanobacteria, and some protists produce organic.
Photosynthesis Photosynthesis: process that converts atmospheric CO 2 and H 2 O to carbohydrates Solar energy is captured in chemical form as ATP and NADPH.
Photosynthesis. 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts:
Chapter 15 (part1) Photosynthesis.
Photophosphorylation
Photosynthesis Chapter 8.
Unit 3 - Photosynthesis The Basis of Life. Overall Process 6CO H 2 O + Light Energy  C 6 H 12 O 6 + 6O 2 + 6H 2.
BIOL 205 :: Photosynthesis Lecture 1 Introduction and the light reactions.
Photosynthesis. General Formula CO 2 + H 2 O + light  O 2 + C 6 H 12 O 6 Photosynthesis is a endothermic reaction requiring an external source of energy.
Cell Energy: Photosynthesis. Where Does Energy Come From?  Autotrophs: Use light energy from the sun to produce food necessary to give them energy. 
8-3 The Reactions of Photosynthesis
PHOTOSYNTHESIS Chapter 10. PHOTOSYNTHESIS Overview: The Process That Feeds the Biosphere Photosynthesis Is the process that converts light (sun) energy.
Photosynthesis. Energy for Life What are autotrophs? Why are they important?
A Bit of Photosynthesis History – Jan van Helmont Planted a seed into A pre-measured amount of soil and watered for 5 years Weighed Plant & Soil.
Photosynthesis. The Sun - Ultimate Energy 1.5 x kJ falls on the earth each day 1% is absorbed by photosynthetic organisms and transformed into chemical.
Plants do both: photosynthesis and respiration. The Photosynthetic Reaction.
Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis.
The Reactions (I).  H 2 O is absorbed by the root epidermal cellsepidermal cells  Plants absorb water and carbon dioxide through stoma (a pore surrounded.
Photosynthesis: An Overview.  The key cellular process identified with energy production is photosynthesis.  Photosynthesis is the process in which.
Photosynthesis Photosynthesis is the process of converting light energy to chemical energy stored in carbon compounds. – Plants, algae, cyanobacteria,
Chapter 8 Light Reactions. Need To Know How photosystems convert light energy into chemical energy. (There will be more on this in the next couple of.
Photosynthesis Photosynthesis The Photosynthesis Song -
Photosynthesis Chapter 8. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 +
Biology Ch. 8 Photosynthesis. 8-1 Energy and Life Energy is the ability to do work. Living things get their energy from food. Most energy from food comes.
Photosynthesis Ch. 7.
Converting Light Energy into Chemical Energy
AP Biology What do you see in this picture?
The Light Reactions Chapter 3.3
PHOTOSYNTHESIS CH 10. Autotrophs are the worlds producers. Photoautotrophs produce organic molecules using solar energy. Chemoautotrophs produce organic.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 8 Photosynthesis: Capturing Energy.
Engineering algae (or plants) to make H 2 Changing Cyanobacteria to make a 5 carbon alcohol.
Discovering Photosynthesis  Van Helmont- wanted to know if plants grow by taking stuff out of the soil  Concluded the weight came from the water (hydrate).
Photosynthesis – Capturing the Energy in Light Chapter 8-1.
Focus Activity What does a chloroplast do?. Chapter 8 Photosynthesis.
Photosynthesis Chapter 8. Energy and Life Chapter 8.1.
PHOTOSYNTHESIS Photosynthesis is a process that involves transforming the energy from sunlight along with carbon dioxide and water to form sugar and oxygen.
Photosynthesis. How do we know that plants make carbohydrates from just carbon dioxide water and light energy?  For example: Jan Baptisa van Helmont.
Photosynthesis is broken down into 2 parts: The Light Dependent Reactions: require sunlight; produce ATP, NADPH and O 2 The light Independent ( a.k.a.
AP Biology Discussion Notes Tuesday 12/09/2014. Goals for the Day 1.Be able to describe what a photosystem is and how it works. 2.Be able to describe.
Fig. 10-3a 5 µm Mesophyll cell Stomata CO 2 O2O2 Chloroplast Mesophyll Vein Leaf cross section.
Photosynthesis. A. Introduction 1. Location: chloroplasts (in plants and algae) or folds in cell membrane (in photosynthetic prokaryotes, cyanobacteria)
Chapter 8: Photosynthesis
Photosynthesis Ch. 7.
Photosynthesis.
Photosynthesis: The Light Reactions.
Photosynthesis the process by which light energy is converted to chemical bond energy and carbon is fixed into organic compounds. The general formula is:
Ch.8-3 Photosynthesis Cells.
Photosynthesis I pp
Living things run on batteries.
Photosynthesis 1) Light rxns use light to pump H+
8 Photosynthesis.
Photosynthesis Chapter 8.
Photosynthesis – Capturing the Energy in Light
PHOTOSYNTHESIS …………The Details.
Photosynthesis Textbook pages 97 – 103.
Photosynthesis – Capturing the Energy in Light
Photosynthesis – Capturing the Energy in Light
BIOL 205 :: Photosynthesis Lecture 1
Converting Light Energy into Chemical Energy
Presentation transcript:

1 Introduction to Photosynthesis Photosynthetic process converts light energy into chemical energy. Plants, algae and some types of bacteria use photosynthesis to make organic compounds. The photosynthetic process is carried out by a set of complex protein molecules that are located in and around a membrane. Energy drives a series of reactions transforming light energy into chemical energy. Oxygenic photosynthesis produces O 2, but not anoxygenic photosynthesis. Photosynthetic organisms remove 1e15 grams of C y -1 (or 4e18 kJ) (Houghton and Woodwell, 1990).

2 Ref: THE PHOTOSYNTHETIC PROCESS In: "Concepts in Photobiology: Photosynthesis and Photomorphogenesis", Edited by GS Singhal, G Renger, SK Sopory, K-D Irrgang and Govindjee, Narosa Publishers/New Delhi; and Kluwer Academic/Dordrecht, pp John Whitmarsh Photosynthesis Research Unit, Agricultural Research Service/USDA Department of Plant Biology and Center of Biophysics and Computational Biology, Uiversity of Illinois at Urbana-Champaign Govindjee Department of Plant Biology and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign Site: life.uiuc.edu/govindjee/paper/gov.html

3 Photosynthetic studies 1640: Jan van Helmont - a Belgian philosopher, chemist and physician – grew a 5 lb willow tree in 200 lbs of soil, and watered regularly with rain water. Within 5 years the tree weighed 169 lbs and the soil 199 lbs. Plants got nutrients from water and somewhere. 1772: Joseph Priestly, a british scientist showed plant shoots produce oxygen. Plants restore oxygen. A few years later, Jan Ingenhousz demonstrated that light is required to produce oxygen. Jean Senebier, a Swiss botanist and naturalist, discovered that CO 2 is required for photosynthetic growth and Nicolas- Théodore de Saussure, a Swiss chemist and plant physiologist, showed that water is required. 1800s: F.F. Blackman showed a two-step process for photosynthesis.

4 Photosynthetic studies – cont that Julius Robert von Mayer, a German physician and physicist, proposed that photosynthetic organisms convert light energy into chemical energy. Middle of 19 th century: A chemical reaction was proposed, CO 2 + 2H 2 O + Light Energy  [CH 2 O] + O 2 + H 2 O Where does O 2 comes from, CO 2 or H 2 O? Hill and Scarisbrick (1940) demonstrated oxygen evolution in the absence of CO 2 in illuminated chloroplasts and by Ruben et al. (1941) who used 18 O enriched water

5 Photosynthetic studies – cont. Carbon reduction can occur in the dark and involves a series of biochemical reactions that were elucidated by Melvin Calvin, Andrew Benson and James Bassham in the late 1940s and 1950s. Using the radioisotope 14 C, most of the intermediate steps that result in the production of carbohydrate were identified. Calvin was awarded the Nobel Prize for Chemistry in 1961 for this work.

6 Plant pigments and light absorption

7 Chlorophyll Chlorophyll, a pigment, absorbs sun light. Antenna contains chlorophyll molecules to collect light. Antenna absorb quanta and transfer the reaction center. CHO in Chlorophyll b

8 Energy in light reactions Excite electrons of antenna chlorophyll anchored to proteins Electron transfer chemical reactions in reaction center Proton and electron transfer (redox) reactions (Photosystems I and II) Produce high-energy molecules NADP + + e  NADPH ADP –electrochemical rxn  ATP Reduction of CO 2

9 Photosystem II PSII is composed of polypeptides P680 and redox components (chlorophyll, pheophytin, plastoquinone, tyrosine, Mn, Fe, cytochrome b559, carotenoid and histidine) light-induced electron transfer drive the oxidation of water and the reduction of plastoquinone PQ Cytochrome b559 must be present, but its involvement in reaction is unknown.

10 Photo-energy in PSII O 2 from H 2 O The energy aspect of the various intermediate species in photosynthesis and the products in PSII

11 The Cytochrome bf Complex The cytochrome bf complex removes the electrons from reduced plastoquinone (PQ or PQH 2 ) and facilitates the release of the protons into the inner aqueous space. Electron transfer from the cytochrome bf complex to photosystem I is mediated by a small Cu-protein, plastocyanin (PC). The electrons are eventually transferred to the PS I reaction center.

12 Photosystem I PS I is composed of a heterodimer of proteins that act as ligands for most of the electron carriers Antenna system (200 mainly chlorophyll a P700 molecules) serve PS I. PS I catalyzes the oxidation of plastocyanin, a small soluble Cu- protein, and the reduction of ferredoxin, a small FeS protein

13 Energy aspects in PS I PS I reduces, F d, ferredoxin, a small FeS protein

14 The ATP synthesis CF0 CF1 ATP Synthase complex is composed CF0 and CF1 CF0 is a channel for H + CF1 has several protein subunits for the reaction ADP + Pi + H +  ATP+ H 2 O ATP is the energy molecule of life.

15 Photosynthesis The protons released into the inner aqueous solution results in a difference in pH and electrochemical potential across the membrane.

16 Light and Dark Reactions h H2OH2O CO 2 O2O2 Sugar ATP NADPH

17 The Calvin Cycle for Dark Reactions

18 Final exam date Chem218 Dec. 15, pm, MC 4040