BCH 3000 PRINSIP BIOKIMIA (Semester /13) 1 FOR PJJ
Kod/Nama Kursus : BCM 3000 (4+0) (Biokimia Asas) Nama Pensyarah : Prof. Dr. Mohd Arif Syed (MAS) -Penyelaras Prof. Dato’ Dr. Abu Bakar Salleh (ABS) Jabatan : Biokimia Jadual Kuliah ( Masa dan Tempat) : 2
(This course encompasses the main biomoleculer components in biochemistry. Metabolism involving the anabolism and catabolism of major biomolecules are also explained) Sinopsis 3
1.Distinguish the structure and function of biomolecules found in biological systems (C4) 2.State the various key metabolic processes (P2) 3.Describe the biochemical reactions (A3) 4.Solve problems related to the metabolism of biomolecules by using information from various sources (CTPS, LL) Learning Outcome 4
1.Introduction-Biochemistry? Contributions? Important life components 2.Carbohydrates – Classification – mono, di polysaccharides – Structure –configuration & stereochemistry; reactions – glucose and other sugars 3.Amino acid & protein – biological roles, structure, classification, reactions, analysis. Peptides – primary, secondary, tertiary and quaternary structures 4.Lipid –functions & distribution, characteristics of fatty acids-saturated & unsaturated f/acids. Structures & characteristics of triacylglycerols, phospholipids, sphingolipids, terpenes & steroids Brief Lecture Contents 5
5.Nucleic acids – components – purines, pyrimidines. Structure, reactions & importance of nucleosides, nucleotides & polynucleotides. DNA, RNA – structure, functions & types 6.Enzymology – Classification, naming, active sites. Enzyme kinetics. Factors affecting enzyme activity- enzyme & substrate concentration, pH, temperature. Substrate specificity – single & multiple substrate. Enzyme inhibitors – competitive, con-competitive, uncompetitive. Control of enzyme reactions – product inhibition, Isoenzymes, multienzyme system and allosteric enzymes Brief Lecture Contents 6
7.Carbohydrate metabolism – Metabolic energy cycle – Bioenergetics: ATP other high energy compounds. Storage & energy transfer. Glycolysis & fermentation. Electron transport system. Compartmentation & mitochondria. Phosphorylation & production of ATP. Anaplerotic reactions. Glyoxylate cycle. Gluconeogenesis. Pentose phosphate pathway. Integration and control. 8.Photosynthesis – Fixation of CO 2 during photosynthesis. Chlorophyll, components of photosynthesis. Photosystem I & II. Photophosphorylation. Calvin cycle. Hatch-Slack cycle. Brief Lecture Contents 7
9.Lipid metabolism – Lipid oxidation- Enzymes involved, energy production. Oxidation of saturated & branched fatty acids. Formation of ketone bodies. Lipid biosynthesis –mitochondrial system and extra- mitochondrial. Cycle & enzymes involved. Synthesis of saturated & unsaturated fatty acids. Cholesterol synthesis & control. 10.Protein & amino acid metabolism – Degradation of amino acids- transamination, deamination, decarboxylation. Cycle involved- intermediates for the TCA cycle. Ammonia and urea metabolism. Biosynthesis of amino acids- role in the metabolism of porphyrin and nucleic acids. Nitrogen fixation. Brief Lecture Contents 8
11.Nucleic acid metabolism – synthesis of mononucleotides – purines, pyrimidines – cycle and enzymes involved; control. Biosynthesis of ribo & deoxyribonucleotides. Characteristics of genetic materials – chromosomes. Genetic code, base sequence. DNA replication. DNA repair. Protein synthesis – ribosome, co-factor involved & phase of synthesis. Inhibition and control of synthesis. 12.Membrane Biochemistry – Modification & structure. Model for membrane structure. Transport mechanism across membrane – passive & active transport. Brief Lecture Contents 9
13.Hormones- Introduction to plant & animal hormones. Reactions & control of endocrine hormones. Hormone reactions at the molecular level. 14.Integration & control o f metabolism. Relationship between carbohydrate, lipid and protein metabolism. Brief Lecture Contents 10
11 Course Evaluation 1.Mid Term = 35% 2.Final Exam= 45% 3.SCL= 20% Total= 100%
12 Course Evaluation Mid Term = 35% - 5, 6, 7 April 2013 Topics covered in test 1.Introduction-Biochemistry 2.Carbohydrates 3.Amino acid & protein 4.Lipid 5.Nucleic 6.Enzymology
13 Course Evaluation Mid Term = 35% - 5, 6, 7 April 2013 Types of Questions 1.Duration – 2 hours 2.Multiple choice – 60 questions (1 mark each) 3.Short Answers - Choose 8 out of 10 questions ; 5 marks each
14 Course Evaluation Final Examination= 45% Topics covered in exam 7.Carbohydrate metabolism 8.Photosynthesis 9.Lipid 10.Protein & amino acid metabolism 11.Nucleic acid metabolism 12.Membrane 13.Hormones 13.Integration & control of metabolism
15 Course Evaluation SCL (Student Centered Learning = 20% In this exercise, each student is required to produce a model of an oligopeptide using materials from the environment. The model should be able to demonstrate clearly the structural configuration of the oligopeptide. The student will be asked to present the model and explain the structural configuration
16 Course Evaluation SCL (Student Centered Learning = 20% Model Requirements 1.The student must design and produce a model of an oligopeptide 2. All amino acids must be different from one another and of different group 3.Materials used must be from the environment. No model kit will be allowed. This is also not computer modeling 4.The model should clearly show the structure of the amino acid 5.Student will be asked to explain their respective models
17 Course Evaluation SCL (Student Centered Learning = 20% PRESENTATION 1.Week 14 2.Place – Biotek 1 3.Date – please inform when you are available 4.Evalauation by a panel