Lecture 3 Outline: Thurs, Sept 11 Chapters 1.3-1.4 Probability model for 2-group randomized experiment Randomization test p-value Probability model for.

Slides:



Advertisements
Similar presentations
Section 7.1 Hypothesis Testing: Hypothesis: Null Hypothesis (H 0 ): Alternative Hypothesis (H 1 ): a statistical analysis used to decide which of two competing.
Advertisements

1/55 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 10 Hypothesis Testing.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Basic Business Statistics.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 9 Hypothesis Testing: Single.
Inferences About Process Quality
Chapter 9 Hypothesis Testing.
Lecture 3 Outline: Tues, Jan 20 Chapter 1.3 Probability model for 2-group randomized experiment. Hypothesis testing review Randomization test p-value Principle.
Statistics for Managers Using Microsoft® Excel 5th Edition
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Tests of Hypotheses Based on a Single Sample.
Warm-up Day of 8.1 and 8.2 Quiz and Types of Errors Notes.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 9 Hypothesis Testing.
Chapter 10 Hypothesis Testing
Confidence Intervals and Hypothesis Testing - II
Descriptive statistics Inferential statistics
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
Chapter 8 Hypothesis testing 1. ▪Along with estimation, hypothesis testing is one of the major fields of statistical inference ▪In estimation, we: –don’t.
Fundamentals of Hypothesis Testing: One-Sample Tests
Testing Hypotheses About Proportions
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Introduction to Hypothesis Testing.
Week 8 Fundamentals of Hypothesis Testing: One-Sample Tests
Inference for a Single Population Proportion (p).
F OUNDATIONS OF S TATISTICAL I NFERENCE. D EFINITIONS Statistical inference is the process of reaching conclusions about characteristics of an entire.
Hypothesis Testing: One Sample Cases. Outline: – The logic of hypothesis testing – The Five-Step Model – Hypothesis testing for single sample means (z.
Chapter 10 Hypothesis Testing
Lecture 7 Introduction to Hypothesis Testing. Lecture Goals After completing this lecture, you should be able to: Formulate null and alternative hypotheses.
LECTURE 19 THURSDAY, 14 April STA 291 Spring
Confidence intervals are one of the two most common types of statistical inference. Use a confidence interval when your goal is to estimate a population.
CHAPTER 20: Inference About a Population Proportion
Hypotheses tests for means
CHAPTER 17: Tests of Significance: The Basics
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section Inference about Two Means: Independent Samples 11.3.
1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.
1 ConceptsDescriptionHypothesis TheoryLawsModel organizesurprise validate formalize The Scientific Method.
CHAPTER 9 Testing a Claim
Significance Test A claim is made. Is the claim true? Is the claim false?
Large sample CI for μ Small sample CI for μ Large sample CI for p
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 8 Hypothesis Testing.
Chap 8-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 8 Introduction to Hypothesis.
Statistics 101 Chapter 10 Section 2. How to run a significance test Step 1: Identify the population of interest and the parameter you want to draw conclusions.
Fitting probability models to frequency data. Review - proportions Data: discrete nominal variable with two states (“success” and “failure”) You can do.
AP STATISTICS LESSON 10 – 2 DAY 2 MORE DETAIL: STATING HYPOTHESES.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall 9-1 σ σ.
CHAPTER 15: Tests of Significance The Basics ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
CHAPTER 9 Testing a Claim
BPS - 3rd Ed. Chapter 141 Tests of significance: the basics.
Fall 2002Biostat Statistical Inference - Confidence Intervals General (1 -  ) Confidence Intervals: a random interval that will include a fixed.
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Logic and Vocabulary of Hypothesis Tests Chapter 13.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
AP Statistics Section 11.1 B More on Significance Tests.
Business Statistics for Managerial Decision Farideh Dehkordi-Vakil.
© Copyright McGraw-Hill 2004
AP Statistics Chapter 11 Notes. Significance Test & Hypothesis Significance test: a formal procedure for comparing observed data with a hypothesis whose.
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
Lecture 22 Dustin Lueker.  Similar to testing one proportion  Hypotheses are set up like two sample mean test ◦ H 0 :p 1 -p 2 =0  Same as H 0 : p 1.
Tests of Significance: The Basics ESS chapter 15 © 2013 W.H. Freeman and Company.
Uncertainty and confidence Although the sample mean,, is a unique number for any particular sample, if you pick a different sample you will probably get.
BIOL 582 Lecture Set 2 Inferential Statistics, Hypotheses, and Resampling.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 9 Testing a Claim 9.1 Significance Tests:
CHAPTER 15: Tests of Significance The Basics ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
A.P. STATISTICS EXAM REVIEW TOPIC #2 Tests of Significance and Confidence Intervals for Means and Proportions Chapters
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. 1 FINAL EXAMINATION STUDY MATERIAL III A ADDITIONAL READING MATERIAL – INTRO STATS 3 RD EDITION.
Inference for a Single Population Proportion (p)
Chapter 8: Inference for Proportions
Significance Tests: The Basics
CHAPTER 10 Comparing Two Populations or Groups
Presentation transcript:

Lecture 3 Outline: Thurs, Sept 11 Chapters Probability model for 2-group randomized experiment Randomization test p-value Probability model for random sampling

Vocabulary of Experiments A study is an experiment when we actually do something to people, animals or objects to observe the response. Experimental units are the things to which treatments are applied, e.g., people, rats, samples of materials or pieces of land. When units are human beings, they are called subjects. A specific experimental condition applied to the units is called a treatment. The “control” refers to a treatment that is considered a baseline for comparing all other treatments. Creativity study: Experimental units? Treatments?

Probability Model for 2-treatment Randomized Experiment Creativity Study –Chance mechanism for randomizing units to treatment groups ensures that every subset of 24 subjects gets the same chance of becoming intrinsic group –For example, 23 red and 24 black cards could be shuffled and dealt, one to each subject and the subjects with black cards would be the intrinsic group. –Tables of random numbers can be used to assign units to groups (assign the units with the 24 highest numbers to group 1).

Additive Treatment Effect Model Potential Outcomes: For each subject, we can imagine what the subject’s outcome would be if placed in the extrinsic group (Y) and what subject’s outcome would be if placed in the intrinsic group (Y*). We only see the outcome for the group to which they were assigned. Additive Treatment Effect Model: For every subject, Y*=Y+ is a parameter – an unknown constant that describes a key feature in model for answering questions of interest.

Test for Treatment Effect Meaning of : – >0: Intrinsic questionnaire improves creativity. – =0 : Intrinsic questionnaire (treatment) makes no difference. – <0: Intrinsic questionnaire makes creativity worse. Hypothesis testing: Questions of interests are translated into questions about parameters in probability models. Null hypothesis (H 0 ): =0 (group status has no effect on outcome) Alternative Hypothesis: (group status has an effect on outcome)

Test Statistic A test statistic is a numerical data summary for testing a hypothesis. We try to find a test statistic that tends to be small when the null hypothesis is true and tends to be large when the alternative hypothesis is true. Test statistic for 2-group randomized exp.: –Let be the sample mean of the outcome for units assigned to group 1. –Let be the sample mean of the outcome for units assigned to group 2. –Test statistic: T=

Testing the Null Hypothesis If there is no treatment effect (H 0 ), subjects would receive same outcome regardless of their assigned group. If there is a treatment effect, subjects will receive a higher (or lower) outcome if they are assigned to one group. Therefore a large value of argues against the null hypothesis. But how large is large? Even if there is no treatment effect, T will not necessarily equal 0 because the random assignment can result in an uneven mix of abilities.

Randomization Test p-value The observed value of the test statistic can be large because –(a) there is an effect of the treatment –(b) the random assignment resulted in an uneven mix A randomization test p-value is the probability associated with explanation (b) The smaller the p-value, the less believable (b) is as an explanation.

Exact Calculation of the p-value The p-value is the probability that T>=4.14 if, in fact, there is no treatment effect (and based on the random assignment of units to groups) Important starting point: If there is no treatment effect, then the creativity score for an individual would have been the same had they been assigned to the other group. Exact Calculation of p-value –Calculate T for every possible grouping of the 47 numbers into groups of size 23 and 24 –The p-value is the proportion of regroupings with T>=4.14.

Exact calculation of p-value If there is no treatment effect, subjects would receive same outcome regardless of their assigned group. Distribution of test statistic T if there is no treatment effect: –For every possible random assignment of units into two groups, calculate T using the observed outcomes. –The T’s associated with each possible random assignment have the same probability. The p-value is the probability that if the null hypothesis were true (no treatment effect), T would be greater than or equal to the observed T 0

Example Suppose the creativity study had just six students. Suppose the three students assigned to the intrinsic group had scores of 12, 20 and 28. The three students assigned to the extrinsic group had scores of 10, 18 and 26. Calculate the p-value for testing if there is a treatment effect.

P-value for Creativity Study For the actual creativity study, using a computer program, the p-value is.011. Conclusion: either –(i) there is no treatment effect and we happened to get an uneven randomization –(ii) there is a treatment effect. The probability associated with (i) is.011. So either there is a treatment effect or we obtained an unusual (one-in-a-hundred) randomization. A p-value of around.01 is considered strong evidence against the null hypothesis, see pg. 47

One-sided vs. Two-sided Tests For some problems, we might know that the treatment effect is >=0 or <=0 and want to use a one-sided alternative hypothesis –(i) H a : or –(ii) H a : The appropriate test statistics for the one-sided alternative hypotheses are for testing (i) and for testing (ii), where it is assumed that group 2 is the “treatment” group and group 1 is the “control” group.

Randomization Distribution and p-value Defn.: The randomization distribution of a test statistic describes its possible values over all the ways the randomization could have turned out. The p-value of the randomization test is the proportion of the randomization distribution that is at least as large as the observed test statistic.

Approximating the p-value For the creativity study, there are 1.6*10 13 different groupings. Approximating the randomization test p-value. –(i) Monte Carlo simulation: Randomly choose many groupings. Approximate the randomization distribution by the histogram of the test statistic for the randomly chosen groupings –(ii) (Chapter 2). The randomization distribution of the “t-statistic” is approximated by the “t”-distribution.

Probability Model for Random Sampling Consider taking random samples from two populations with respective means and. Are the means different? H 0 : H 1 : Test statistic:

Probability Model for Random Sampling The sampling distribution of is represented by a histogram of all values for the statistic from all possible samples that can be drawn from the two populations. The p-value for testing a hypothesis (and confidence intervals) follows from an understanding of the sampling distribution. We will discuss sampling distribution in Ch. 2.