Topologically-Aware Overlay Construction and Server Selection Sylvia Ratnasamy, Mark Handly, Richard Karp and Scott Shenker Presented by Shreeram Sahasrabudhe.

Slides:



Advertisements
Similar presentations
SkipNet: A Scalable Overlay Network with Practical Locality Properties Nick Harvey, Mike Jones, Stefan Saroiu, Marvin Theimer, Alec Wolman Microsoft Research.
Advertisements

Topology-Aware Overlay Construction and Server Selection Sylvia Ratnasamy Mark Handley Richard Karp Scott Shenker Infocom 2002.
Dynamic Replica Placement for Scalable Content Delivery Yan Chen, Randy H. Katz, John D. Kubiatowicz {yanchen, randy, EECS Department.
Internet Indirection Infrastructure (i3 ) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana UC Berkeley SIGCOMM 2002 Presented by:
CAN 1.Distributed Hash Tables a)DHT recap b)Uses c)Example – CAN.
Peer to Peer and Distributed Hash Tables
Scalable Content-Addressable Network Lintao Liu
Peer-to-Peer Systems Chapter 25. What is Peer-to-Peer (P2P)? Napster? Gnutella? Most people think of P2P as music sharing.
1 Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces Dmitri Krioukov CAIDA/UCSD Joint work with F. Papadopoulos, M.
Fabián E. Bustamante, 2007 Meridian: A lightweight network location service without virtual coordinates B. Wong, A. Slivkins and E. Gün Sirer SIGCOM 2005.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Schenker Presented by Greg Nims.
1 Turning Heterogeneity into an Advantage in Overlay Routing Gisik Kwon Dept. of Computer Science and Engineering Arizona State University Published in.
LightFlood: An Optimal Flooding Scheme for File Search in Unstructured P2P Systems Song Jiang, Lei Guo, and Xiaodong Zhang College of William and Mary.
“Scalable and Topologically-aware Application-layer Multicast” Yusung Kim Korea Advanced Institute of Science and Technology.
A Scalable Content Addressable Network (CAN)
Using Structure Indices for Efficient Approximation of Network Properties Matthew J. Rattigan, Marc Maier, and David Jensen University of Massachusetts.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker A Scalable, Content- Addressable Network (CAN) ACIRI U.C.Berkeley Tahoe Networks.
A Scalable Content Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker Presented by: Ilya Mirsky, Alex.
A Scalable Content-Addressable Network Authors: S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker University of California, Berkeley Presenter:
Scalable Adaptive Data Dissemination Under Heterogeneous Environment Yan Chen, John Kubiatowicz and Ben Zhao UC Berkeley.
SkipNet: A Scalable Overlay Network with Practical Locality Properties Nick Harvey, Mike Jones, Stefan Saroiu, Marvin Theimer, Alec Wolman Microsoft Research.
Overlay Networks EECS 122: Lecture 18 Department of Electrical Engineering and Computer Sciences University of California Berkeley.
Search and Replication in Unstructured Peer-to-Peer Networks Pei Cao Cisco Systems, Inc. (Joint work with Christine Lv, Edith Cohen, Kai Li and Scott Shenker)
The Impact of DHT Routing Geometry on Resilience and Proximity Krishna Gummadi, Ramakrishna Gummadi, Sylvia Ratnasamy, Steve Gribble, Scott Shenker, Ion.
1 A Scalable Content- Addressable Network S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Proceedings of ACM SIGCOMM ’01 Sections: 3.5 & 3.7.
T. S. Eugene Ng Mellon University1 Global Network Positioning: A New Approach to Network Distance Prediction Tze Sing Eugene.
1 Load Balance and Efficient Hierarchical Data-Centric Storage in Sensor Networks Yao Zhao, List Lab, Northwestern Univ Yan Chen, List Lab, Northwestern.
1 CS 194: Distributed Systems Distributed Hash Tables Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer.
1 Load Balance and Efficient Hierarchical Data-Centric Storage in Sensor Networks Yao Zhao, List Lab, Northwestern Univ Yan Chen, List Lab, Northwestern.
An Evaluation of Scalable Application-level Multicast Using Peer-to-peer Overlays Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron,
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker A Scalable, Content- Addressable Network ACIRI U.C.Berkeley Tahoe Networks 1.
Topology-Aware Overlay Networks By Huseyin Ozgur TAN.
Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana UC Berkeley SIGCOMM 2002.
FLANN Fast Library for Approximate Nearest Neighbors
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker A Scalable, Content- Addressable Network ACIRI U.C.Berkeley Tahoe Networks 1.
Structured P2P Network Group14: Qiwei Zhang; Shi Yan; Dawei Ouyang; Boyu Sun.
1 A scalable Content- Addressable Network Sylvia Rathnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker Pirammanayagam Manickavasagam.
Roger ZimmermannCOMPSAC 2004, September 30 Spatial Data Query Support in Peer-to-Peer Systems Roger Zimmermann, Wei-Shinn Ku, and Haojun Wang Computer.
PIC: Practical Internet Coordinates for Distance Estimation Manuel Costa joint work with Miguel Castro, Ant Rowstron, Peter Key Microsoft Research Cambridge.
CONTENT ADDRESSABLE NETWORK Sylvia Ratsanamy, Mark Handley Paul Francis, Richard Karp Scott Shenker.
Applied Research Laboratory David E. Taylor A Scalable Content-Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker.
Sylvia Ratnasamy (UC Berkley Dissertation 2002) Paul Francis Mark Handley Richard Karp Scott Shenker A Scalable, Content Addressable Network Slides by.
Vincent Matossian September 21st 2001 ECE 579 An Overview of Decentralized Discovery mechanisms.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Paper Group: 20 Overlay Networks 2 nd March, 2004 Above papers are original works of respective authors, referenced here for academic purposes only Chetan.
A Scalable Content-Addressable Network (CAN) Seminar “Peer-to-peer Information Systems” Speaker Vladimir Eske Advisor Dr. Ralf Schenkel November 2003.
An IP Address Based Caching Scheme for Peer-to-Peer Networks Ronaldo Alves Ferreira Joint work with Ananth Grama and Suresh Jagannathan Department of Computer.
Scalable Content- Addressable Networks Prepared by Kuhan Paramsothy March 5, 2007.
P2P Group Meeting (ICS/FORTH) Monday, 28 March, 2005 A Scalable Content-Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
1 Distributed Hash Table CS780-3 Lecture Notes In courtesy of Heng Yin.
LightFlood: An Efficient Flooding Scheme for File Search in Unstructured P2P Systems Song Jiang, Lei Guo, and Xiaodong Zhang College of William and Mary.
Topologically-Aware Overlay Construction and Sever Selection Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker.
Two Peer-to-Peer Networking Approaches Ken Calvert Net Seminar, 23 October 2001 Note: Many slides “borrowed” from S. Ratnasamy’s Qualifying Exam talk.
A Simulation-Based Study of Overlay Routing Performance CS 268 Course Project Andrey Ermolinskiy, Hovig Bayandorian, Daniel Chen.
CSCI 599: Beyond Web Browsers Professor Shahram Ghandeharizadeh Computer Science Department Los Angeles, CA
Gang Wang, Shining Wu, Guodong Wang, Beixing Deng, Xing Li Tsinghua University Tsinghua Univ. Oct Experimental Study on Neighbor Selection Policy.
Incrementally Improving Lookup Latency in Distributed Hash Table Systems Hui Zhang 1, Ashish Goel 2, Ramesh Govindan 1 1 University of Southern California.
Distributed Caching and Adaptive Search in Multilayer P2P Networks Chen Wang, Li Xiao, Yunhao Liu, Pei Zheng The 24th International Conference on Distributed.
1 Towards Scalable Pub/Sub Systems Shuping Ji 1, Chunyang Ye 2, Jun Wei 1 and Arno Jacobsen 3 1 Chinese Academy of Sciences 2 Hainan University 3 Middleware.
Internet Indirection Infrastructure (i3)
Impact of Neighbor Selection on Performance and Resilience of Structured P2P Networks Sushma Maramreddy.
Zhichen Xu, Mallik Mahalingam, Magnus Karlsson
Turning Heterogeneity into an Advantage in Overlay Routing
Early Measurements of a Cluster-based Architecture for P2P Systems
A Scalable content-addressable network
CONTENT ADDRESSABLE NETWORK
A Scalable, Content-Addressable Network
A Scalable Content Addressable Network
A Scalable, Content-Addressable Network
Presentation transcript:

Topologically-Aware Overlay Construction and Server Selection Sylvia Ratnasamy, Mark Handly, Richard Karp and Scott Shenker Presented by Shreeram Sahasrabudhe CSE 498 Advanced Networks

Motivation The potential benefit by some knowledge of topology for distributed internet applications Improving application-level connectivity Need for solution which is Simple Fast – for the dynamic target systems Distributed – no central point of failure or bottleneck Scalable – for millions of nodes

Approach Network Measurement used: Network Latency Non-intrusive Light-weight End-to-end Priorities: (Scalability + Practicality) > Accuracy Binning Scheme Evaluation of the application of this scheme to overlay networks and server selection

Distributed Binning Requires a set of landmark machines spread across the internet. (8-12 machines) Nodes measure RTT to each of these landmarks and orders the landmarks in increasing RTT. (relative) Divide the range of possible latency values into layers (absolute)

Scalable? Each node only needs measure with small set of landmarks At a million nodes on the network, refreshing at every hour, each landmark would approximately handle 2700pings/sec. (800Mhz m/c; DNS root servers handle DNS queries at 1600/sec) Better scalability by have multiple nodes at a location act as a single logical landmark.

Sanity Check For each node in a bin compute Gain ratio = inter-bin latency / intra-bin latency Ratio = Reduction in Latency = Desirable Algorithm tested on simulated topologies (Transit Stub, Power-law Random Graphs) and internet data (NLANR). Improvement rapidly saturates Gain ratio is affected by the size of the underlying topology

Binning Vs (Random, Nearest-Neighbor) Random Binning: Each node selects a bin at random. Nearest Neighbor Clustering: At each iteration, two closest clusters are merged into a single cluster.

Construction of Overlays Structured: Nodes are interconnected (at application-level) in a well-defined manner. Content-Addressable Network, Chord, PASTRY, Tapestry Unstructured: Less structured networks End- system multicast, Scattercast. Measurement metric is Latency Stretch: ratio of average inter-node latency on the overlay network to the average inter-node latency on the underlying IP-level network. Latency Stretch = Better!

Construction of CAN topologies using Binning Ordering of landmarks is used for binning m landmarks, m! orderings Co-ordinate space divided along first dimension into m portions, each portion sub divided along second dimension into m-1 portions and so on New node joins CAN at a random portion associated with its landmark ordering Result Co-ordinate space not uniformly populated Uneven distribution of size of zone spaces (future work!)

Unstructured Overlays Given a set of n nodes on the Internet, have each node pick any k neighbor nodes from this set, so that the average routing latency on the resultant overlay is low. Use a heuristic algorithm: node picks k/2 closest nodes and k/2 at random Short-Long: Shortest path routing, short-long-short BinShort: k/2 nodes from self-bin and rest k/2 at random.

Server - Selection If (Server=bin[client]) > 1 Redirect to a random server in same bin Else Select existing server with most_similar_bin to client’s (Degree of similarity between two bins = no of matches of positions in landmark ordering) Stretch = (latency to selected server) / (latency to optimal server)

- For TS-10K 1000 servers, rest clients - Adjusted stretch - For NLANR data - Improved performance - diminishing returns