Odour and Air Management Studies Key Tool in Determining Effective Odour Control Solutions Presented by: Wayne Wong, M.A.Sc, EIT.

Slides:



Advertisements
Similar presentations
COLLECTION SYSTEM TREATMENT WITH BIO-ORGANIC CATALYST.
Advertisements

Typical Plumbing System
Wastewater Collection (Sewer Alternatives). Sewer Basics Collection and transport of wastewater from each home/building to the point where treatment occurs.
Liquids and Gasses Matter that “Flows”
Aero-Hydrodynamic Characteristics
Design of W.W. Collection System
Chapter 20 Plumbing Plans.
1 CE 548 Analysis and Selection of Wastewater Flowrates and Constituent Loading.
WASTEWATER ENGINEERING
September 29-30, 2011 Drinking Water Program Sustained Compliance Workshop Lee Johnson, P.E
2013 Stormwater Workshop June 13, 2013 Sponsored By Michiana Stormwater Partnership John J. Dillon Director, LTCP Management City of South Bend.
Brown Bag Session. THREE STRATEGIES AVAILABLE FOR ODOR CONTROL IN WASTEWATER COLLECTION SYSTEMS AND TREATMENT PLANTS. Preclude foul odors from forming.
CE 3372 Water Systems Design
7 th International Conference on Sewer Processes and Networks (SPN7) Isaac Volschan Jr. Water Resources and Environmental Engineering Department Federal.
Heating and Air Conditioning I
Local Exhaust Hoods. 2 Introduction:  Designed to capture and remove harmful emissions from various processes prior to their escape into the workplace.
Fugitive Emissions Gestión Ambiental Tema 5. Fugitive Emissions An average sized manufacturing plant have components (pumps, valves, compressor,
CE 3372 Water Systems Design
PP04010.jpg.
Principles of Liquid Flow through Pipelines
1 Stormwater and Wastewater in Halifax Regional Municipality Presentation to Halifax Watershed Advisory Board John Sheppard, P.Eng. Manager of Environmental.
Fluid mechanics 3.1 – key points
Wastewater generation
Thermodynamics of Industrial Cooling Towers
Distribution System Control Strategies.  Tank Management/Operations  Flushing  Rerouting Water  Others  optimizing existing booster chlorination.
Assignment No. 1 [Grup 8] Figure below shows a portion of a hydraulic circuit. The pressure point B must be 200 psig when the volume flow rate is 60 gal/min.
SEWER PIPING DESIGN Sewer piping differs from water piping, in that sewer pipes are not under pressure. The function that takes place inside sewer pipes.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Pipeline systems.
Hydraulic Routing in Rivers
CHAPTER 2: Flow through single &combined Pipelines
SSES and GIS, A Great Partnership Cindy Fort, PE Technical Director Environmental Engineering and Jeff McCann GIS Coordinator.
M.K. PANDEY/P. Jenssen Centralised –Decentralised transportation system.
CTC 450 Review 1  WW Characteristics. Objectives 2  Understand the basics of storm drainage systems  Understand the basics of sewer systems.
Atmospheric pressure and winds
Pavement Analysis and Design
September 2005Urban Planning Carleton University 1 Drainage Systems _____________________________.
Boundary layer concept
Water amd wastewater treatemt Hydraulics
SEWAGE TREATMENT.  Sewage is the mainly liquid waste containing some solids produced by humans, typically consisting of washing water, urine, feces,
Odor Control without Chemicals MWEA/AWWA Joint Conference August 11, 2010 Mark Prein, P.E.
Urban Storm Drain Design: Pump Station Design. Purposes To lift stormwater to higher elevation when discharge of local collection system lies below regional.
Meteorology & Air Pollution Dr. Wesam Al Madhoun.
Air Movement and Natural Ventilation
Sedimentation.
Methods of Landfilling
Hydraulic Routing in Rivers Reference: HEC-RAS Hydraulic Reference Manual, Version 4.1, Chapters 1 and 2 Reading: HEC-RAS Manual pp. 2-1 to 2-12 Applied.
An-Najah National University Engineering College Civil Engineering Department Project title : Management of stormwater for a portion of Faisal street “Nablus”
52 RCACS Ground School Engines PO 407 EO 2 “Cooling, Fuel and Lubrication Systems”
Smoke Testing Information
Bradshaw Model. Upstream Downstream Discharge Occupied channel width Channel depth Average velocity Load quantity Load particle size Channel bed roughness.
CE 3372 WATER SYSTEMS DESIGN LECTURE 23: SANITARY SEWERS (USING SWMM)
 Erosion  process by which wind, water, ice, or gravity transports soil and sediment from one location to another.
Wastewater Treatment. Municipal Systems … ~75% of Canadians are on these waste water systems Waste leaves your home  enters a service line  enters sewer.
Monday April 26, PHYS , Spring 2004 Dr. Andrew Brandt PHYS 1443 – Section 501 Lecture #24 Monday, April 26, 2004 Dr. Andrew Brandt 1.Fluid.
CTC 450 Review 1  WW Characteristics. Objectives 2  Understand the basics of storm drainage systems  Understand the basics of sewer systems.
Biofilter Ventilation System: Treating Odor and Corrosion Issues in Macomb County Sewers Macomb County Public Works Commissioner Anthony V. Marrocco MWEA.
PRESENTSITS Sanitary Wastewater Concentrator. A Shortcut to Reusable Clean Water From Sanitary Wastewater!
Unit 209: Drainage systems
Spring 2009 Town Meeting Article 41 East Framingham Sewer Improvement Project (EFSIP) May 2009 Town of Framingham Department of Public Works "Preserving.
Sanitary Engineering Lecture 7
What is the Bradshaw model?
CE 3372 Water Systems Design
CTC 450 Review WW Sludge Processes.
CTC 450 Review WW Characteristics.
UNIT I & II - MCQ.
Chapter 4. Analysis of Flows in Pipes
Typical Plumbing System
ME444 ENGINEERING PIPING SYSTEM DESIGN
2 Days National Workshop on “National Building Code of India 2016 ”
Meteorology & Air Pollution Dr. Wesam Al Madhoun
Presentation transcript:

Odour and Air Management Studies Key Tool in Determining Effective Odour Control Solutions Presented by: Wayne Wong, M.A.Sc, EIT

September 28, Project Team Yuko Suda, P.Eng. – Kerr Wood Leidal Associates Ltd. Ted Steele, P.Eng. – Kerr Wood Leidal Associates Ltd. Karl Mueller, P.Eng. – Kerr Wood Leidal Associates Ltd. Chris Hunniford, PE – OCTC, a V&A Company

September 28, Introduction to Sanitary Odours Sewer odours can be found everywhere! Gravity sewers Air vents Pump stations Forcemains Manholes Wastewater treatment plants Operational headache and nuisance Costly problem for municipalities

September 28, Source of Odours in Sanitary Systems Odour Generation + Odour Release = Problem Odour Generation Combination of organic waste material and bacteria in the sewer generates hydrogen sulfide (H 2 S) and volatile organic compounds (VOCs) Especially problematic in collection systems with large detention times Odour Release Local pressurization of the air space above sewage results in odourous air being released from a contained space (sewer, manhole, tanks)

September 28, Odour Generation Occurs where there are large concentrations of organic waste materials and bacteria in the collection system Odour generation is accelerated under the right environmental conditions -Anaerobic conditions (typical in long forcemains or in collection systems with long hydraulic detention times) Odour generation is generally difficult to avoid

September 28, Odour Release Odourous compounds generally exist within the collection system headspace. These odourous compounds become a nuisance when there is pressurization and air movement which transport these odourous compounds from the headspace and released into the environment There are a number of physical mechanisms that result in pressurization. The primary mechanism is air movement in the sewer due to the effects of friction drag

September 28, Air Movement in Sewers The primary force for air movement in gravity systems is the friction between the sewer headspace air and the moving wastewater below. Resistance to air movement due to friction between air and pipe wall An idealized velocity gradient can be developed based on these simple boundary conditions

September 28, Air Movement in Sewers Friction factor between water and air varies depending on factors such as turbulence and rough water surfaces (high friction factor) Slower moving, quiescent water surfaces will generally result in a lower friction factor. The flow rate of air that is conveyed is proportional to the air velocity in the headspace and the cross sectional area of the headspace

September 28, Pressurization in Sewer Headspace Occurs when there are abrupt changes in rate of air flow in the sewer High flow rate of air from one section colliding with air in a downstream section that has a lower air flow rate Change in air flow rates can be caused by changes in pipe slope and/or restrictions in the sewer headspace When an area of pressurization coincides with a vent or manhole, sewer air will be expelled at that point

September 28, Other Factors That Can Contribute to Odour Ventilation Problems Change in atmospheric (barometric) pressure or ambient temperature (air density change) can cause air movement in/out of the collection system Strong surface winds can draw air out of the collection system via eduction Decrease in pipe diameter in downstream pipe sections Opposing or perpendicular flows entering a junction can cause a temporary backup of air

September 28, Other Factors That Can Contribute to Odour Ventilation Problems Ventilation effects are more pronounced in collection systems with fewer service connections, vents and manholes, where there are fewer relief points for expelling air Ventilation effects can be most severe at inverted siphons, full-flowing or surcharged sewers and pump stations where airflow can be stopped completely, creating high pressures in the sewers

September 28, Developing Solutions Conventional solution has been to seal manholes or install carbon scrubbers This results in increased air pressurization of the overall collection system and causes air to be expelled elsewhere. This is a reactive approach which shifts the problem to another location rather than solving the problem

September 28, Developing Solutions Completing an odour and air management study to determine the most effective mitigation strategy is a more proactive approach A comprehensive odour and air management study can be used to: Determine the root cause of odour emissions Develop options to eliminate problems while minimizing capital and operating costs.

September 28, Odour and Air Management Study An effective odour control and air management study includes: Monitoring program (H 2 S, VOCs, differential air pressure) Ventilation modeling (areas of pressurization, air flow rates, ventilation dynamics, release points) Hydraulic modeling (displacement effects) Based on the above study, an evaluation can be conducted to develop the most effective strategy for mitigating odour

September 28, Differential Pressure Monitoring

September 28, Hydrogen Sulphide Monitoring

September 28, Odour and Air Management Study An evaluation can be conducted to develop the most effective strategy for mitigating odour emissions Key Considerations: Cost Feasibility of implementation Environmental impacts (hazardous chemicals, noise, etc.) Overall treatment effectiveness

September 28, Active Odour Control Facilities An active odour control facility draws air from the sewer using a fan, treats it, and releases it to the atmosphere. Types of treatment include biofilters, activated carbon adsorbers, and chemical scrubbers etc. Drawing air in from the sewer with a blower and treating it creates an area of negative pressure (zone of influence) in the vicinity of the collection system within the sewer.

September 28, Case Study – Highbury Interceptor Metro Vancouver The Highbury Interceptor is owned and operated by Metro Vancouver. Combined sewer (expected to be fully separated by 2050) Total length = 6 km Pipe diameter – 2,900 mm Significant odour complaints and headspace pressurization issues Noise issues during winter storms in which large volumes of air are expelled from vents Manhole lids have been observed to be blown off

September 28, Case Study – Highbury Interceptor Metro Vancouver Monitoring of differential pressure, H 2 S, and VOCs were carried out during both wet and dry weather periods Differential pressure indicated significant positive pressure occurs throughout the Highbury Interceptor Ventilation modeling estimated the drag airflow at 10,000 cfm Downstream end of the interceptor is a siphon, and no air can be conveyed beyond this point, creating an area of high pressurization

September 28, Case Study – Highbury Interceptor Metro Vancouver Hydraulic modeling indicated that sections of sewer becomes completely isolated from upstream, downstream, and tributary sewers during high flow (backwatering) The ventilation model estimated that a typical storm could displace up to 7,000 cfm Model indicated that as sewage level increase, a large amount of air can only be displaced at a few small vents (high pressure and high air discharge velocity)

September 28, Case Study – Highbury Interceptor Metro Vancouver KWL/OCTC project team proposed three active odour control facilities along the interceptor sewer The main active odour control facility, with a design treatment capacity of 10,000 cfm, would have a zone of influence of approximately 4.6 km

September 28, Conclusion An odour control and air management study that includes monitoring, ventilation modeling, and hydraulic modeling is key to determining the root cause of odour complaints and can be used to develop a cost effective solution for controlling odour in a sanitary collection system.

September 28, Questions? Contact Information Wayne Wong, M.A.Sc., EIT Kerr Wood Leidal Associates Ltd. (604)