Copyright ©2003 South-Western/Thomson Learning Chapter 4 The Time Value Of Money.

Slides:



Advertisements
Similar presentations
Chapter 2 Interest and Future Value The objectives of this chapter are to enable you to:  Understand the relationship between interest and future value.
Advertisements

3-1 Time Value of Money. 3-2 After studying, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand the relationship.
Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
Introduction to Finance
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Chapter 4,5 Time Value of Money.
The Time Value of Money Compounding and Discounting Single Sums and Annuities  1999, Prentice Hall, Inc.
1 Time Value Analysis Corporate Finance Dr. A. DeMaskey.
4 The Time Value Of Money.
Learning Goals Discuss the role of time value in finance and the use of computational aids to simplify its application. Understand the concept of future.
Principles of Managerial Finance 9th Edition
McGraw-Hill/Irwin ©2008 The McGraw-Hill Companies, All Rights Reserved CHAPTER3CHAPTER3 CHAPTER3CHAPTER3 The Interest Factor in Financing.
Learning Objectives Explain the mechanics of compounding, and bringing the value of money back to the present. Understand annuities. Determine the future.
TIME VALUE OF MONEY Chapter 5. The Role of Time Value in Finance Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Most financial decisions.
Chapter 3 The Time Value of Money. 2 Time Value of Money  The most important concept in finance  Used in nearly every financial decision  Business.
©2012 McGraw-Hill Ryerson Limited 1 of 37 Learning Objectives 1.Explain the concept of the time value of money. (LO1) 2.Calculate present values, future.
Principles of Corporate Finance Session 10 Unit II: Time Value of Money.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Time Value of Money Many financial decisions require comparisons of cash payments at different dates Example: 2 investments that require an initial investment.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 6 Discounted Cash Flow Valuation.
Copyright  2004 McGraw-Hill Australia Pty Ltd PPTs t/a Fundamentals of Corporate Finance 3e Ross, Thompson, Christensen, Westerfield and Jordan Slides.
7 - 1 Copyright © 2002 by Harcourt, Inc.All rights reserved. Future value Present value Rates of return Amortization CHAPTER 7 Time Value of Money.
5-1 McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
1.6.1.G1 (BAII Plus) Introduction to Financial Calculators BAII Plus.
Chapter 9 Time Value of Money © 2000 John Wiley & Sons, Inc.
1 Chapter 5 Discounted Cash Flow Valuation. 2 Overview Important Definitions Finding Future Value of an Ordinary Annuity Finding Future Value of Uneven.
Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. Understand the concept.
The Time Value of Money Compounding and Discounting Single Sums.
CH 17 Risk, Return & Time Value of Money. 2 Outline  I. Relationship Between Risk and Return  II. Types of Risk  III. Time Value of Money  IV. Effective.
9/11/20151 HFT 4464 Chapter 5 Time Value of Money.
Chapter 5 – The Time Value of Money  2005, Pearson Prentice Hall.
TIME VALUE OF MONEY. WHY TIME VALUE A rupee today is more valuable than a rupee a year hence. Why ? Preference for current consumption over future consumption.
Professor John Zietlow MBA 621
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Chapter 4 Time Value of Money.
© 2009 Cengage Learning/South-Western The Time Value Of Money Chapter 3.
Discounted Cash Flow Analysis (Time Value of Money) Future value Present value Rates of return.
Chapter 5 The Time Value of Money. Copyright ©2014 Pearson Education, Inc. All rights reserved.5-1 Learning Objectives 1.Explain the mechanics of compounding,
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Quick Quiz – Part 1 Suppose you are looking at the following possible cash flows: Year 1 CF = $100; Years 2 and 3 CFs = $200; Years 4 and 5 CFs = $300.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Ch 4, Time Value of Money, Learning Goals 1.Concept of time value of money (TVOM). 2.Calculate for a.
© 2004 by Nelson, a division of Thomson Canada Limited Contemporary Financial Management Chapter 4: Time Value of Money.
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. The Time Value of Money 9.
Ch. 5 - The Time Value of Money , Prentice Hall, Inc.
Accounting and the Time Value of Money
©2009 McGraw-Hill Ryerson Limited 1 of 37 ©2009 McGraw-Hill Ryerson Limited 9 9 The Time Value of Money ©2009 McGraw-Hill Ryerson Limited Prepared by:
5 The Time Value Of Money ©2006 Thomson/South-Western.
Finance Chapter 6 Time value of money. Time lines & Future Value Time Lines, pages Time: Cash flows: -100 Outflow ? Inflow 5%
Discounted Cash Flow Valuation Multiple Cash Flows We have dealt with lump sums We have dealt with lump sums What if there is more than one cash flow?
3-1 Chapter 3 Time Value of Money © 2001 Prentice-Hall, Inc. Fundamentals of Financial Management, 11/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll.
Introduction to Accounting I Professor Marc Smith CHAPTER 1 MODULE 1 Time Value of Money Module 3.
Chapter 9 Time Value of Money © 2011 John Wiley and Sons.
Besley Ch. 61 Time Value of Money. Besley Ch. 62 Cash Flow Time Lines CF Time Lines are a graphical representation of cash flows associated with a particular.
1 IIS Chapter 5 - The Time Value of Money. 2 IIS The Time Value of Money Compounding and Discounting Single Sums.
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 1 Appendix Time Value of Money: The Basics Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 5 - The Time Value of Money  2005, Pearson Prentice Hall.
6-1 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Chapter 5 Time Value of Money. Basic Definitions Present Value – earlier money on a time line Future Value – later money on a time line Interest rate.
Time Value of Money Dr. Himanshu Joshi FORE School of Management New Delhi.
Financial Management [FIN501] Suman Paul Suman Paul Chowdhury Suman Paul Suman Paul Chowdhury
Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-1 Ch 4, TVOM, Learning Goals Concept of time value of money (TVOM). Calculate for a single.
4 The Time Value Of Money.
Chapter 3 The Time Value of Money.
CHAPTER 6 Time Value of Money
Chapter 5 - The Time Value of Money
9 Chapter The Time Value of Money McGraw-Hill/Irwin
Ch. 5 - The Time Value of Money
Presentation transcript:

Copyright ©2003 South-Western/Thomson Learning Chapter 4 The Time Value Of Money

Introduction This chapter introduces the concepts and skills necessary to understand the time value of money and its applications.

Simple and Compound Interest Simple Interest –Interest paid on the principal sum only Compound Interest –Interest paid on the principal and on prior interest that has not been paid or withdrawn

tto denote time PV 0 = principal amount at time 0 FV n = future value n time periods from time 0 PMTto denote cash payment PVto denote the present value dollar amount Tto denote the tax rate Ito denote simple interest ito denote the interest rate per period nto denote the number of periods Notation

Future Value of a Cash Flow At the end of year n for a sum compounded at interest rate i is FV n = PV 0 (1 + i) n Formula In Table I in the text, (FVIF i,n ) shows the future value of $1 invested for n years at interest rate i: FVIF i,n = (1 + i) n Table I When using the table, FV n = PV 0 (FVIF i,n )

Tables Have Three Variables Interest factors (IF) Time periods (n) Interest rates per period (i) If you know any two, you can solve algebraically for the third variable.

Present Value of a Cash Flow PV 0 = FV n [] Formula PVIF i, n = Table II PV 0 = FV n (PVIF i, n ) Table II 1 (1 + i) n

Example Using Formula What is the PV of $100 one year from now with 12 percent interest compounded monthly? PV 0 = $100  1/(1 +.12/12) (12  1) = $100  1/( ) = $100  ( ) = $ 88.74

Example Using Table II PV 0 = FV n (PVIF i, n ) = $100(.887) From Table II = $ 88.70

Annuity A series of equal dollar CFs for a specified number of periods Ordinary annuity is where the CFs occur at the end of each period. Annuity due is where the CFs occur at the beginning of each period.

FVIFA i, n = Formula for IF FVAN n = PMT(FVIFA i, n ) Table III Future Value of an Ordinary Annuity (1 + i) n – 1 i

Derivation of the FVAN formula(1) The FVAN formula is a geometric series because each term on the right side is equal to the previous term multiplied by a common factor: 1/(1+i). Multiply both sides of the equation above by the common factor to create a second equation.

Derivation of the FVAN formula(2) Subtract this new equation from the original equation on the previous slide. The result: Solve for FVAN.

Present Value of an Ordinary Annuity PVIFA i, n = Formula PVAN 0 = PMT( PVIFA i, n ) Table IV 1 (1 + i) n 1 – i

Annuity Due Future Value of an Annuity Due –FVAND n = PMT(FVIFA i, n )(1 + i) Table III Present Value of an Annuity Due –PVAND 0 = PMT(PVIFA i, n )(1 + i) Table IV

Other Important Formulas Sinking Fund –PMT = FVAN n /(FVIFA i, n ) Table III Payments on a Loan –PMT = PVAN 0 /(PVIFA i, n ) Table IV Present Value of a Perpetuity –PVPER 0 = PMT/i

Interest Compounded More Frequently Than Once Per Year Future Value nm nom 0n m i 1PVFV )( += Present Value ) nm m i nom (1 + FV n PV 0 = m= # of times interest is compounded n = # of years

Interest Compounded More Frequently than Once Per Year Texas Instruments BA II Plus Calculator – set the number of compounding periods to 12 per year: 2 nd, P/Y,, 12, ENTER, CE/C, CE/C When finished: 2 nd, CLR TVM And, reset compounding to once per year: 2 nd, P/Y,, 1, ENTER, CE/C, CE/C

Effective Annual Rates A nominal rate of interest (or Annualized Percentage Rate) is found by multiplying the rate charged or paid per period by the number of periods during the year. This rate does not include the effect of compounding of interest at the end of each period of the year.

Effective Annual Rates For comparison purpose, we need an effective annual rate that includes the effect of compounding. Solve for the rate that gives the same effect with once per year compounding as the APR gives with more frequent compounding than annual.

Effective Annual Rates If compounding is done continuously,

Compounding and Effective Rates Rate of interest per compounding period i m = (1 + i eff ) 1/m – 1 Effective annual rate of interest i eff = (1 + i nom /m) m – 1