APS 5-MAY-2009 G. Gutierrez, Fermilab Edward A. Bouchet Award Talk “ The top quark mass, a brief history and present status” Gaston Gutierrez Fermilab.

Slides:



Advertisements
Similar presentations
1 Data Analysis II Beate Heinemann UC Berkeley and Lawrence Berkeley National Laboratory Hadron Collider Physics Summer School, Fermilab, August 2008.
Advertisements

Investigation on Higgs physics Group Ye Li Graduate Student UW - Madison.
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
Top quark mass For DØ collaboration Regina Demina University of Rochester Wine and Cheese seminar at FNAL, 07/22/05.
Electroweak b physics at LEP V. Ciulli INFN Firenze.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Top Turns Ten March 2 nd, Measurement of the Top Quark Mass The Low Bias Template Method using Lepton + jets events Kevin Black, Meenakshi Narain.
Kevin Black Meenakshi Narain Boston University
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
Top Physics at the Tevatron Mike Arov (Louisiana Tech University) for D0 and CDF Collaborations 1.
LHC pp beam collision on March 13, 2011 Haijun Yang
S. Martí i García Liverpool December 02 1 Selection of events in the all-hadronic channel S. Martí i García CDF End Of Year Review Liverpool / December.
Top Mass Measurement at the Tevatron HEP2005 Europhysics Conference Lisboa, Portugal, June 22, 2005 Koji Sato (Univ. of Tsukuba) for CDF and D0 Collaborations.
Search for resonances The fingerprints of the Top Quark Jessica Levêque, University of Arizona Top Quark Mass Measurement Top Turns Ten Symposium, Fermilab,
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Irakli Chakaberia Final Examination April 28, 2014.
1e -11 t W b b W 0 Longitudinal fraction F 0 ~70% W - Left handed fraction F - ~ 30% Spin Momentum W A precise measurement of the helicity of the W boson.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
Gideon Bella Tel Aviv University On behalf of the ATLAS collaboration ATL-PHYS-PUB ATL-PHYS-PUB Prospects of measuring ZZ and WZ polarization.
Searches for new Physics in the Top quark decay 정 연 세 University of Rochester.
Search for Invisible Higgs Decays at the ILC Akimasa Ishikawa (Tohoku University)
CP violation measurements with the ATLAS detector E. Kneringer – University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA “Determination.
Study of the to Dilepton Channel with the Total Transverse Energy Kinematic Variable Athens, April 17 th 2003 Victoria Giakoumopoulou University of Athens,
Experimental aspects of top quark physics Lecture #2 Regina Demina University of Rochester Topical Seminar on Frontier of Particle Physics Beijing, China.
Commissioning Studies Top Physics Group M. Cobal – University of Udine ATLAS Week, Prague, Sep 2003.
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Experimental aspects of top quark mass measurement Regina Demina University of Rochester 2008 Winter Conference Aspen, CO 01/15/08.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
C2cr07, Lake Tahoe 26-FEB-07 G. Gutierrez, Fermilab The Top Quark Mass and implications Gaston Gutierrez Fermilab So, in the next 20’ I will try to give.
Top quark properties in ATLAS Ruth Laura Sandbach X-SILAFAE-2014, Medellin, Colombia 27/11/2014 X-SILAFAE
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
Liu Minghui Nanjing MC study of W polarization and ttbar spin correlation Liu Minghui, Zhu Chengguang April 27, 2008.
1 EPS2003, Aachen Nikos Varelas ELECTROWEAK & HIGGS PHYSICS AT DØ Nikos Varelas University of Illinois at Chicago for the DØ Collaboration
Top mass error predictions with variable JES for projected luminosities Joshua Qualls Centre College Mentor: Michael Wang.
CIPANP, June 2012 David Toback, Texas A&M University – CDF Collaboration Top Quark Properties with the Full Run II Dataset 1 October 2011 David Toback,
Emily Nurse W production and properties at CDF0. Emily Nurse W production and properties at CDF1 The electron and muon channels are used to measure W.
1 Electroweak Physics Lecture 2. 2 Last Lecture Use EW Lagrangian to make predictions for width of Z boson: Relate this to what we can measure: σ(e+e−
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
1. 2 Tevatron Run II 1fb -1 per experiment on tape ~1.3 fb -1 delivered luminosity Peak luminosity 1.7 x cm -2 s -1 Presented here: ~ 700 pb -1.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University For the CDF Collaboration CIPANP, June 2012.
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
April 7, 2008 DIS UCL1 Tevatron results Heidi Schellman for the D0 and CDF Collaborations.
1 CMS Sensitivity to Quark Contact Interactions with Dijets Selda Esen (Brown) Robert M. Harris (Fermilab) DPF Meeting Nov 1, 2006.
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
RHIC-PV, April 27, 2007 M. Rijssenbeek 1 The Measurement of W ’s at the CERN and FNAL hadron colliders W ’s at RHIC ! W ’s at CERN – UA2 W ’s at FNAL -
Stano Tokar, slide 1 Top into Dileptons Stano Tokar Comenius University, Bratislava With a kind permissison of the CDF top group Dec 2004 RTN Workshop.
1 UCSD Meeting Calibration of High Pt Hadronic W Haifeng Pi 10/16/2007 Outline Introduction High Pt Hadronic W in TTbar and Higgs events Reconstruction.
Session 10 on Standard-Model Electroweak Physics Combined Abstract 845 on Mass of Top: Abstract 169: Measurement of Mass of Top Quark in Lepton+Jets Abstract.
Search for Invisible Higgs Decays at the ILC Ayumi Yamamoto, Akimasa Ishikawa, Hitoshi Yamamoto (Tohoku University) Keisuke Fujii (KEK)
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Investigation on CDF Top Physics Group Ye Li Graduate Student UW - Madison.
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
American Physical Society Meeting St. Louis, MO April th, 2008 Measuring the top mass at DØ using the Ideogram Method Amnon Harel
The Top Quark at CDF Production & Decay Properties
Top mass measurements at the Tevatron
An Important thing to know.
W boson helicity measurement
Jessica Leonard Oct. 23, 2006 Physics 835
University of Tsukuba, Japan Particle Physics Phenomenology,
Top mass measurements at the Tevatron and the standard model fits
Outline Physics Motivation Technique Results
T. Ferbel University of Rochester Planck 2002, Kazimierz
Session 10 on Standard-Model Electroweak Physics
Presentation transcript:

APS 5-MAY-2009 G. Gutierrez, Fermilab Edward A. Bouchet Award Talk “ The top quark mass, a brief history and present status” Gaston Gutierrez Fermilab This talk is dedicated to the memory of Clicerio Avilez.

APS 5-MAY-2009 G. Gutierrez, Fermilab Concepts of maximum likelihood. A brief history of the top quark mass measured by calculating a probability density distribution for every event. The current status of the top mass measurements. Other application of M.E.M. Conclusion. Outline of the talk

APS 5-MAY-2009 G. Gutierrez, Fermilab If for an event characterized by a set of measurements one can calculate the probability density function: then given N events the optimal estimation of the set of parameters is obtained by maximizing General Maximum Likelihood technique

APS 5-MAY-2009 G. Gutierrez, Fermilab In general we have to sun over all states that can lead to the set of measurements the sum is over probabilities (amplitudes) if the states do not (do) interfere. For a perfect detector we have with Probability calculation

APS 5-MAY-2009 G. Gutierrez, Fermilab Probability calculation for real detectors Detector acceptance (e.g. cuts, trigger, …) partonic integral partonic variables mapping between partonic and measured variables measured variables parameters Integral over measured Variable (normalization)

APS 5-MAY-2009 G. Gutierrez, Fermilab Why apply the previous method to the top mass? The top mass is an important SM parameter. Together with the W mass it constrains the Higgs mass Top is a very isolated state, which makes for a cleaner calculation of the pdf. No matter which method we use we all need to model the relation between the top mass and the detector measurements.

APS 5-MAY-2009 G. Gutierrez, Fermilab Kunitaka Kondo J. Phys. Soc. Japan, 57, 4126 (1988) J. Phys. Soc. Japan, 60, 836 (1991) J. Phys. Soc. Japan, 62, 1177 (1993)

APS 5-MAY-2009 G. Gutierrez, Fermilab R.H. Dalitz and Gary R. Goldstein Phys. Rev. D45, 1541 (1992) Proc. Roy. Soc. Lond. A455, 2803 (1999) J. Mod. Phys. A9, 635 (1994) Phys. Lett. B287, 225 (1992) Phys. Rev. D47, 967 (1993)(with K. Sliwa)

APS 5-MAY-2009 G. Gutierrez, Fermilab D0 experiment Nature 429,638 (2004) First complete measurement, including: 1) all detector effects (e.g. reconstruction efficiencies, cuts, trigger, …), 2) correct normalization, 3) background probabilities, 4) MC tests of linearity, 5) pull calculations and 6) estimation of systematic effects.

APS 5-MAY-2009 G. Gutierrez, Fermilab Run I: Top probability for data events Left plot show -ln(P tt ) as a function of M t for <P bkg <10 -8 (red arrows in lower figure). x=-ln(P B ) x=18.5 x=20.4 x=20.0 x=19.4 x=19.2 x=20.5

APS 5-MAY-2009 G. Gutierrez, Fermilab Run I: Top probability for data events Left plots show -ln(P tt ) as a function of M t for 9.7x <P bkg < 9.0x (red arrows in lower figure). x=-ln(P B ) x=27.7 x=27.2 x=26.7 x=26.6 x=25.9 x=25.7

APS 5-MAY-2009 G. Gutierrez, Fermilab Run I: MC linearity after background selection Test of linearity of response with MC samples containing large numbers of events. The number of events in the plot are given before the background cut

APS 5-MAY-2009 G. Gutierrez, Fermilab Run I: Top mass measurement M t =  3.6 GeV (stat) This new technique improves the statistical error on M t from 5.6 GeV [ PRD , (1998) ] to 3.6 GeV. This is equivalent to a factor of 2.4 in the number of events. The number of extracted signal events is: (11±3)/(0.71 x 0.70 x 0.87)=25 ±7 (a 0.5 GeV shift has been applied, from MC studies)

APS 5-MAY-2009 G. Gutierrez, Fermilab Run I: W mass check 80.9 ± 2.6 GeV The likelihood minimizes at = 79.4 GeV, with an error of 2.2 GeV. Studies at M top = 175 GeV show that there is a systematic shift in M W of 1.5 GeV and an under estimation of the error of 20%. Therefore

APS 5-MAY-2009 G. Gutierrez, Fermilab Tevatron Run II top quark mass results using M.E.M.

APS 5-MAY-2009 G. Gutierrez, Fermilab SM Top pair production

APS 5-MAY-2009 G. Gutierrez, Fermilab lepton+jets top event p p t b W q q W b t l

APS 5-MAY-2009 G. Gutierrez, Fermilab Top and W decay W lqlq ν q’-bar p = 40 GeV/c The decay to jets is 3 times more likely than to e and μ t b W p ~ 70 GeV/c Top decays to W+b essentially 100 % of the time M t = 172 GeV/c 2 M W = 80 GeV/c 2

APS 5-MAY-2009 G. Gutierrez, Fermilab Run II: Top mass at D0 There were many improvements in the probability calculations. But the main gain has been to: 1) include a Jet Energy Scale (JES) parameter in the minimization and 2) use a prior from the γ+jet energy calibration. lepton+jets most recently published result (1 fb -1 )

APS 5-MAY-2009 G. Gutierrez, Fermilab Run II: Top mass at D0 lepton+jets most recently published result (1 fb -1 )

APS 5-MAY-2009 G. Gutierrez, Fermilab Run II: Top mass at D0 lepton+jets most recently published result (1 fb -1 )

APS 5-MAY-2009 G. Gutierrez, Fermilab Results presented at this conference

APS 5-MAY-2009 G. Gutierrez, Fermilab

APS 5-MAY-2009 G. Gutierrez, Fermilab

APS 5-MAY-2009 G. Gutierrez, Fermilab

APS 5-MAY-2009 G. Gutierrez, Fermilab Top, W and Higgs masses are related Accurate measurements of the top quark and W boson masses put constraints on the mass of the Higgs boson. Because of the log dependence to have meaningful constraints on the Higgs mass high precision measurement of the W and top quark masses are required.

APS 5-MAY-2009 G. Gutierrez, Fermilab LEP EWWG as of March 2009 These (almost) lines are EW the predictions.

APS 5-MAY-2009 G. Gutierrez, Fermilab Higgs limits as of March 2009 The SM Higgs mass limit from the EW fit is: m H <163 GeV/c 2 at 95% CL. Footnote: There is a 3 σ discrepancy between the hadronic and leptonic F-B asymmetries. If any of this two are removed there are big changes in the Higgs mass limits (see M. Chanowitz, PRD 66:073002, 2002 and Fermilab W&C 2/23/2007)

APS 5-MAY-2009 G. Gutierrez, Fermilab Other applications also presented at this conference

APS 5-MAY-2009 G. Gutierrez, Fermilab Top-antiquark mass difference measurement

APS 5-MAY-2009 G. Gutierrez, Fermilab

APS 5-MAY-2009 G. Gutierrez, Fermilab gg  H  W + W -  l + l - Basic selection: Two opposite sign isolated leptons missing transverse momentum Main backgrounds: WW, WZ, ZZ W+jets and Drell-Yang Geometry help Use full power of Matrix element

APS 5-MAY-2009 G. Gutierrez, Fermilab H  W + W - in CDF (1.9 fb -1 ) Calculate probabilitiesCalculate discriminantCheck for observation If no observation set limit

APS 5-MAY-2009 G. Gutierrez, Fermilab Conclusion To conclude I would like to thank my colleagues for the exiting times during the past decade (when all this work was done) and many thanks to the young people that are carrying this work forward.

APS 5-MAY-2009 G. Gutierrez, Fermilab Backup slides

APS 5-MAY-2009 G. Gutierrez, Fermilab The general method Most people would agree that if the probability of an event could be calculated accurately then the best estimate of a parameter will maximize a likelihood like: The detector and reconstruction effects are always multiplicative and independent of the parameter to be estimated: The probability P(x;α) can be calculated as: Where x is the set of variables measured in the detector, y is the set of parton level variables, dσ is the differential cross section and f(q) are the parton distribution functions. W(x,y) is the probability that a parton level set of variables y will show up in the detector as the set of variables x. The integration reflects the fact that we want to sum over all the possible parton variables y leading to the observed set of variables x.

APS 5-MAY-2009 G. Gutierrez, Fermilab Transfer function W(x,y) W(x,y) is the probability of measuring x when y was produced (x measured variables, y parton variables): where E y energy of the produced quarks E x measured (and corrected) jet energy p y e produced electron momenta p x e measured electron momenta  y j  x j produced and measured jet angles The energy of the electrons is considered well measured. And due to the excellent granularity of the D  calorimeter the angles are also considered as well measured. A sum of two gaussians is used for the jet transfer function (W jet ), the parameters were extracted from MC simulation.

APS 5-MAY-2009 G. Gutierrez, Fermilab Probability for tt events 2(in) + 18(final) = 20 degrees of freedom 3 (e) + 8 (  1..  4) + 3 (P in =P final ) + 1 (E in =E final ) = 15 constraints 20 – 15 = 5 integrals Sum over 12 combinations of jets All values of the neutrino momentum are considered  1 momentum of one of the jetsm 1,m 2 top mass in the event M 1,M 2 W mass in the eventf(q 1 ),f(q 2 ) parton distribution functions (CTEQ4) for qq incident chann. q 1,q 2 initial parton momenta  6 six particle phase space W(x,y) probability of measuring x when y was produced in the collision We chose these variables of integration because |M(α)| 2 is almost negligible everywhere except near the peaks of the four Breit-Wigners in |M(α)| 2.

APS 5-MAY-2009 G. Gutierrez, Fermilab Matrix Element no ttbar spin correlation included s qt sine of angle between q and t in the q q CM  top quark's velocity in the q q CM g s strong coupling constant Leptonic decay Hadronic decay M t, M W pole mass of top and W m t top mass in any event m e,m du invariant mass of the e and du (or cs) system  t,  W width of top and W g W weak coupling constant  (cos  eb,db ) angular distribution of the W decay

APS 5-MAY-2009 G. Gutierrez, Fermilab Acceptance Corrections Detector Acceptance Likelihood Production probability Detector acceptance Measured probability, and N gen (N) is the number of generated(accepted) events