To study x-ray cavity statistically, we retrieved archival data from the Chandra archive. We obtained our initial sample from the Cluster of galaxies (1522),

Slides:



Advertisements
Similar presentations
Authors: A.Bliss, D.M.Worrall, M.Birkinshaw (Bristol), H.Tananbaum, S.Murray (Harvard-Smithsonian C.f.A.) Fig.1: Combined IVU band image, J circled.
Advertisements

AGN Feedback at the Parsec Scale Feng Yuan Shanghai Astronomical Observatory, CAS with: F. G. Xie (SHAO) J. P. Ostriker (Princeton University) M. Li (SHAO)
Low-frequency radio maps for the REXCESS cluster sample S.R. Heidenreich, University of Southampton In collaboration with J.H. Croston, University of Southampton;
Radio Mode Feedback in Giant Elliptical Galaxies Paul Nulsen (CfA), Christine Jones (CfA), William Forman (CfA), Eugene Churazov (MPA), Laurence David.
Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields S. Fawcett, A. Hicks,
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
X-Ray Measurements of the Mass of M87 D. Fabricant, M. Lecar, and P. Gorenstein Astrophysical Journal, 241: , 15 October 1980 Image:
AGN-controlled gas cooling in elliptical galaxies and galaxy clusters Christian R. Kaiser, Edward C.D. Pope, Georgi Pavlovski, Hans Fangohr, Southampton.
The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa)
The GMRT Radio Halo survey Results and implications for LOFAR Simona Giacintucci Harvard-Smithsonian CfA, Cambridge, USA INAF-IRA, Bologna, Italy T. Venturi,
X-ray and Radio AGN in Coma Cluster Progenitors Quyen Nguyen Hart University of Colorado at Boulder, Center for Astrophysics and Space Astronomy Collaborators.
Ben Maughan (CfA)Chandra Fellows Symposium 2006 The cluster scaling relations observed by Chandra C. Jones, W. Forman, L. Van Speybroeck.
First X-Ray Results from the Optically Selected Red Sequence Cluster Survey (RCS) at Z ~ 1 Amalia K. Hicks, Erica Ellingson, Howard Yee, Tesla Jeltema,
July 7, 2008SLAC Annual Program ReviewPage 1 Weak Lensing of The Faint Source Correlation Function Eric Morganson KIPAC.
The Regulation of Star Formation by AGN Feedback D AVID R AFFERTY (Penn State / Ohio U.) Collaborators: Brian McNamara (Waterloo) and Paul Nulsen (CfA)
HOT TIMES FOR COOLING FLOWS Mateusz Ruszkowski. Cooling flow cluster Non-cooling flow cluster gas radiates X-rays & loses pressure support against gravity.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
Growth of Structure Measurement from a Large Cluster Survey using Chandra and XMM-Newton John R. Peterson (Purdue), J. Garrett Jernigan (SSL, Berkeley),
I. Balestra, P.T., S. Ettori, P. Rosati, S. Borgani, V. Mainieri, M. Viola, C. Norman Galaxies and Structures through Cosmic Times - Venice, March 2006.
XMM results in radio-galaxy physics Judith Croston CEA Saclay, Service d’Astrophysique EPIC consortium meeting, Ringberg, 12/04/05.
Low frequency radio observations of galaxy groups With acknowledgements to: R. Athreya, P. Mazzotta, T. Clarke, W. Forman, C. Jones, T. Ponman S.Giacintucci.
Radio Sources in High-Redshift Galaxy Clusters: An Initial Look Megan Roscioli University of Chicago In collaboration with Mike Gladders, U. Chicago RCS-1,2.
Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity-Dependent Density Evolution Takuro Narumoto (Department.
PRESIDENCY UNIVERSITY
The Evolution of X-ray Luminous Groups Tesla Jeltema Carnegie Observatories J. Mulchaey, L. Lubin, C. Fassnacht, P. Rosati, and H. Böhringer.
Kinematics of Globular Clusters in Giant Elliptical Galaxies Hong Soo Park 1, Myung Gyoon Lee 1, Ho Seong Hwang 2, Nobuo Arimoto 3, Naoyuki Tamura 4, Masato.
Studying AGN feedback in nearby X-ray groups and clusters Electra Panagoulia Institute of Astronomy, Cambridge, UK With: Andy Fabian Jeremy Sanders Julie.
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
Richard Mushotzky (NASA/GSFC) and Amalia K. Hicks (University of Colorado) An enduring enigma in X-ray astronomy is the "missing mass" in cooling flow.
Modern Quasar SEDs Zhaohui Shang ( Tianjin Normal University ) Kunming, Feb
The Environments of Galaxies: from Kiloparsecs to Megaparsecs August 2004 Cool Cores in Galaxy Groups Ewan O’Sullivan Harvard-Smithsonian Center for Astrophysics.
The clustering of galaxies detected by neutral hydrogen emission Sean Passmoor Prof. Catherine Cress Image courtesy of NRAO/AUI and Fabian Walter, Max.
MASS AND ENTROPY PROFILES OF X-RAY BRIGHT RELAXED GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
This composite X-ray (blue)/radio (pink) image of the galaxy cluster Abell 400 shows radio jets immersed in a vast cloud of multimillion degree X-ray emitting.
3 Temperature profiles The shape of the temperatures profiles (some examples are shown in Fig.2) resemble the one obtained for hotter, more massive clusters.
Extreme soft X-ray emission from the broad-line quasar REJ R.L.C. Starling 1*, E.M. Puchnarewicz 1, K.O. Mason 1 & E. Romero- Colmenero 2 1 Mullard.
Chandra Observation of the Failed Cluster Candidate K. Hayashida, H. Katayama (Osaka University), K. Mori (Penn State University), T.T. Takeuchi.
Initial Results from the Chandra Shallow X-ray Survey in the NDWFS in Boötes S. Murray, C. Jones, W. Forman, A. Kenter, A. Vikhlinin, P. Green, D. Fabricant,
X-RAY FOLLOW-UP OF STRONG LENSING OBJECTS: SL2S GROUPS (AND A1703) FABIO GASTALDELLO (IASF-MILAN, UCI) M. LIMOUSIN & THE SL2S COLLABORATION.
Main-Cluster XIS0XIS1XIS3 Weighted mean Chandra Figure 2 : XIS spectra of the main-cluster XIS keV Main-Cluster Sub-Cluster Search for Bulk Motion.
On the evolution of Cool Core Clusters Joana Santos (INAF-Trieste) Piero Rosati (ESO), Paolo Tozzi (INAF-Trieste), Hans Boehringer (MPE), Stefano Ettori.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Major dry-merger rate and extremely massive major dry-mergers of BCGs Deng Zugan June 31st Taiwan.
USING LOW POWER RADIO GALAXIES AS BEACONS FOR CLUSTERS AT 1
MASS PROFILES OF X-RAY BRIGHT RELAXED GROUPS: METHODS AND SYSTEMATICS FABIO GASTALDELLO IASF-INAF MILANO & UC IRVINE D. BUOTE UCI P. HUMPHREY UCI L. ZAPPACOSTA.
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter Lecture Outline.
Peter-Christian Zinn | AGN feedback works both ways | The Modern Radio Universe | 22 APR 2013 AGN feedback works both ways Positive AGN feedback through.
(1) Laboratoire d’Astrophysique de Marseille [F] - (2) Université de Montréal [Ca] - (3) Observatoire de Paris [F] Asymmetries within Optical Discs of.
Jet Interactions with the Hot Atmospheres of Clusters & Galaxies B.R. McNamara University of Waterloo Girdwood, Alaska May 23, 2007 L. Birzan, P.E.J. Nulsen,
Abstract We present multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS ,
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
TWO SAMPLES OF X-RAY GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS UCSC F. BRIGHENTI BOLOGNA.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
The GOOD NICMOS Survey (GNS): Observing Massive Galaxies at z > 2 Christopher J. Conselice (University of Nottingham) with Asa Bluck, Ruth Gruethbacher,
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
Brigthest Cluster Galaxies Unique class of objects  most luminous  most massive  extended source  some BCG shows multiple nuclei → galaxy merger →
Challenging the merger/sloshing cold front paradigm: A2142 revisited by XMM Mariachiara Rossetti (Università degli Studi di Milano & IASF Milano) D. Eckert,
A smoothed hardness map of the hotspots of Cygnus A (right) reveals previously unknown structure around the hotspots in the form of outer and inner arcs.
U.A. Dyudina, A.P. Ingersoll, California Institute of Technology Pasadena, CA, Objectives We study lightning on Jupiter using spatially resolved.
Apparent high metallicity in 3-4 keV clusters:
M. LIMOUSIN & THE SL2S COLLABORATION
NICMOS Measurements of the Near Infrared Background
Molecular gas in cooling flows Interplay with AGN and starbursts
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
DIFFUSE RADIO SOURCES in GROUPS and POOR CLUSTERS
Spectral Energy Distributions of a Hard X-ray Selected AGN Sample in the Extended Groth Strip Cristina Ramos Almeida1, Jose Miguel Rodríguez Espinosa1,
Yongmin Yoon, Myungshin Im, Gwang-ho Lee, Gu Lim, and Seong-kook Lee
Borislav Nedelchev et al. 2019
Presentation transcript:

To study x-ray cavity statistically, we retrieved archival data from the Chandra archive. We obtained our initial sample from the Cluster of galaxies (1522), Normal galaxies (978), and Active galaxies and Quasars (2452) categories. By visual inspection, we excluded targets which are point sources, have low S/N data, or show merging features, and finalized 87 targets (Cluster of galaxies :78, Normal galaxies: 8, and Active galaxies and Quasars :1). Our sample is the largest (87) to date for studying cavities and covers the large mass range from individual galaxies to galaxy clusters. A systematic search for X-ray cavities in galaxy clusters, groups, and elliptical galaxies Jaejin Shin 1,2, Jong-Hak Woo 1,2, John S. Mulchaey 2 1 Seoul National University, Seoul, Republic of Korea 2 Carnegie Observatories, Pasadena, CA, United States AGN feedback is considered one of the most important phenomena for solving the "cooling flow" problem and driving the galaxy-SMBH co-evolution. As some of the strongest evidence for AGN feedback, X-ray cavities are useful for investigating AGN feedback over 10 kpc scales. Furthermore, X-ray cavities are believed to be connected with radio outbursts from AGN. By collecting all available X-ray data from the Chandra archive, we build up a sample of ~200 targets, including galaxy clusters, galaxy groups, and elliptical galaxies, in order to conduct a comprehensive study of X-ray cavities in various environments. Using modeling and unsharp masking techniques, we investigate the presence of X-ray cavities and their physical properties (i.e., cavity size) for the 89 targets with enough X-ray photons to perform the analysis. Here, we present our first results on the X-ray cavity properties and discuss environmental effects. Birzan et al. 2004, ApJ, 607, 800 Dong et al. 2010, ApJ, 712, 883 C. C. Kirkpatrick et al. 2009, ApJ, 709, L69 Virklihnin et al. 2006, ApJ, 640, 691 Beta modeling and Unsharp masking We detected cavities using beta modeling and unsharp masking method in CIAO. Mainly we used the beta model subtracted image to detect cavities and obtained a hint from unsharp masked image. For 16 targets, we measure cavity properties from the raw image because the model fits were not good. Cavity size and distance from x-ray center were determined by visual inspection. Sample [O III] λ5007 Figure 4. Comparison between cavity properties. Major axis a- minor axis b relation (left), Major axis a-distance relation (center), and Area of cavity- distance relation (right). Color represents temperature. Dashed line (Birzan et al. 2004) and dotted line (Dong et al. 2010) show previous results. Introduction Abstract Analysis Measuring gas temperature Contact : Jaejin Shin The result of AGN feedback, x-ray cavities cover the larger scales (up to ~100kpc) compared to other feedback phenomena (i.e., AGN outflow). Showing morphological links with radio emission, X-ray cavities likely originate from radio jets. Studying x-ray cavities can provide clues into galaxy-SMBH co-evolution. However, previous study focused on narrow dynamical range with small sample. Here, we investigate x-ray cavities in a statistically large sample with a large dynamical range. RXJ Results Out of ~5000 archival observations, we constructed a large sample of 87 targets with broad dynamical range and good S/N. We detected 124 cavities from 49 targets using raw images or beta model subtracted images. We found that the cavity size is larger when the cavity is farther from the x-ray center. The observed temperature-cavity properties relation is due to the observational limit and intrinsic size of the X-ray emission. Figure 2. Beta modeling and Unsharp masking results. Smoothed raw image (left), beta model (left center), residual image (right center), unsharp masking (right). Cavities are shown as green ellipses. Figure.1 The composite image of Hydra A cluster. X-ray data from Chandra (blue), Radio data from VLA (pink), and optical data (yellow) from CFHT. This composite image is taken from chandra.harvard.edu. Summary Cavity detection Through beta modeling and the unsharp masking method, we detected 124 cavities from 49 (56%) targets of our 87 targets. The other 38 targets show little evidence of cavities or cold fronts. Since the gas distribution of targets showing cold fronts are asymmetric (Fig 3), we did not consider these features as cavities. 1. High temperature systems tend to be observed at higher redshift (Fig 5a). Due to spatial resolution limitations, we can not detect small cavities at high redshift (Fig 5b). 2. Lower temperature systems have smaller x-ray gas distributions. Therefore, we cannot observe large cavities in low temperature systems. Cavity properties (Major axis a, Minor axis b, distance between x-ray center and cavity center, and area of cavity) are strongly correlated. The minor axis-major axis relation and distance-major relation are similar to previous results (Birzan et al. 2004, Dong et al. 2010). References To investigate environment effects on x-ray cavity, we determined the gas temperature within R R 2500 was calculated using the temperature-radius relation (Eq. 12 of Virklihnin et al. 2006) Higher temperature systems show larger cavities Spatial resolutio n limit Growth limit Log Area (kpc^2) Log gas temperature (kev) Log Area (kpc^2) Log Redshift (z) Log Distance D (kpc)Log minor axis b (kpc) Log Area (kpc^2) Log Distance D (kpc) Log major axis b (kpc) Figure 5. Comparisons between area of cavity and gas temperature. Figure 5b. Comparisons between redshift and area of cavity. Solid curve represents 1’’ circle area size as a function of redshift. Log Redshift (z) Log gas temperature (kev) Figure 5a. Comparisons between redshift and gas temperature. The largest sample size with the broadest dynamical range Equation 1. temperature-radius relation Abell 1991 Figure 3. Fitting result of Abell Smoothed raw image (left), smoothed beta model subtracted image (center), and unsharp masked image (right). Green ellipse represents fake cavity. Larger distance, larger cavity size Investigating systematic difference between cavity detected targets and non-detected targets Studying multi-cavities system Comparing radio properties to cavity properties Future plan