Ref.1: Mokhatab et al, Handbook of Natural Gas Transmission and Processing, Gulf Publishing Com., 2006, Chapter 3. Ref.2: Sloan, Clathrate hydrates of.

Slides:



Advertisements
Similar presentations
CHEMICAL AND PHASE EQUILIBRIUM (1)
Advertisements

Review of Chemical Thermodynamics Combustion MECH 6191 Department of Mechanical and Industrial Engineering Concordia University Lecture #1 Textbook: Introduction.
Property Methods In Aspen Plus
GASES! AP Chapter 10. Characteristics of Gases Substances that are gases at room temperature tend to be molecular substances with low molecular masses.
Lecture 19 Overview Ch. 4-5 List of topics Heat engines
CHE-201: Introduction to Chemical Engineering
Chapter 15 Chemical Reactions Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus A. Çengel and.
Properties of Reservoir Fluids Fugacity and Equilibrium Fall 2010 Shahab Gerami 1.
Energy Storage in Clathrates and Related Molecular Compounds Wendy L. Mao Geological and Environmental Sciences & Photon Science, SLAC Stanford University.
Chapter 16 Chemical and Phase Equilibrium Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 3.
Introduction to Petroleum Production Engineering
Chapter 18 Ideal vs. Real Gases. Variables Affecting Gases 4 Variables: 1.Pressure 2.Volume 3.Temperature 4.Number of particles By changing any one of.
Intermolecular Forces and Liquids and Solids Chapter 12.
Chapter 14: Phase Equilibria Applications
Chemical Equilibrium The reversibility of reactions.
Chapter 14 Chemical reactions
Chapter 15 Chemical reactions.  Any material that can be burned to release thermal energy is called a fuel.  Most familiar fuels consist primarily of.
Solution thermodynamics theory—Part IV
Joshua Condon, Richard Graver, Joseph Saah, Shekhar Shah
Now we introduce a new concept: fugacity
Numerical Simulation of Methane Hydrate in Sandstone Cores K. Nazridoust, G. Ahmadi and D.H. Smith Department of Mechanical and Aeronautical Engineering.
Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 31 Ideal Gas Mixtures.
Advanced Thermodynamics Note 12 Chemical-Reaction Equilibria
1 Partial Pressure Pressure of individual gases in a mixture.
Chapter two.
Gases Chapter 5. What you need to know… PV = nRT for gas stoichiometry Partial pressures for kinetics and equilibrium later Water vapor pressure calculations.
Fugacity, Ideal Solutions, Activity, Activity Coefficient
Chapter 9: Gases: Their Properties and Behavior
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
Chemical Equations The Mathematics of Chemical Formulas.
(12) The expression of K in terms of fugacity coefficient is: The standard state for a gas is the ideal-gas state of the pure gas at the standard-state.
Chemical Reactions in Ideal Gases. Non-reacting ideal gas mixture Consider a binary mixture of molecules of types A and B. The canonical partition function.
THERMODYNAMICS OF SEPARATION OPERATIONS
The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules Chapter 3.
Physical Property Modeling from Equations of State David Schaich Hope College REU 2003 Evaluation of Series Coefficients for the Peng-Robinson Equation.
Solution thermodynamics theory—Part I
Chapter 5 – Gases. In Chapter 5 we will explore the relationship between several properties of gases: Pressure: Pascals (Pa) Volume: m 3 or liters Amount:
Natural Gas Hydrates Jakob de Swaan Arons Professor Royal Dutch Shell Chair Chemical Engineering Department Tsinghua University, Beijing, China 19th September.
Root Mean Square Velocity (urms)
حرارة وديناميكا حرارية
1 Chapter 10 Gases Forestville Central School. 2 Properties of Gases Properties of Gases: 1. Gases have an indefinite shape. 2. Gases can expand. 3. Gases.
Thermodynamics of Separation Operations
Warm-up 2H 2 (g) + O 2 (g)  2H 2 O (g) How many liters of water will be produced from 300 grams of Oxygen gas if Hydrogen gas is in excess? (at STP)
 In the previous section you specified the stream conditions in the Workbook property view. Next you will input the composition information in the Stream.
Power Plant Engineering
Chemical Reaction Equilibria
Generalized van der Waals Partition Function
Solution thermodynamics theory—Part IV
Monatomic Crystals.
Prentice Hall © 2003Chapter 15 Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 5 Single Phase Systems
PHY1039 Properties of Matter van der Waals Gas 16 February, 2012 Lecture 4.
Solution thermodynamics theory
Phase Diagrams CHEM HONORS. Kinetic Theory of Matter Kinetic Theory of Matter: molecules are always moving Measure kinetic energy with a thermometer known.
Thermodynamics: Spontaneity, Entropy and Free Energy.
WCB/McGraw-Hill © The McGraw-Hill Companies, Inc.,1998 Thermodynamics Çengel Boles Third Edition 15 CHAPTER Chemical and Phase Equilibrium.
Chapter 14: Phase Equilibria Applications Part II.
Chapter 5 Gases. Reactions Involving Gases in reactions of gases, the amount of a gas is often given as a volume the ideal gas law allows us to convert.
The Molecular Physics of Chain Clusters Boris Sedunov Professor Russian New University Moscow.
Solution thermodynamics theory—Part III
CHEE 323J.S. Parent1 Reaction Kinetics and Thermodynamics We define a catalyst as a substance that increases the rate of approach to equilibrium of a reaction.
Impact of Impurities on Formation of CO2 Hydrates
Solution of Thermodynamics: Theory and applications
Topic 5 Gases. Topic 5 Overview 5.1 Describing Gases - Phases of matter - Units of pressure 5.2 Ideal and Non-Ideal (Real) Gases - Ideal gas behaviour.
Chapter 10 Gases: Their Properties and Behavior
Phase Equilibrium.
Satish Pradhan Dnyanasadhana college, Thane
Lecture 31 Ideal Gas Mixtures.
Presentation transcript:

Ref.1: Mokhatab et al, Handbook of Natural Gas Transmission and Processing, Gulf Publishing Com., 2006, Chapter 3. Ref.2: Sloan, Clathrate hydrates of natural gases, Marcel Decker Inc., 1998.

Gas Hydrate A gas hydrate is an ice-like crystalline solid called a clathrate, which occurs when water molecules form a cage-like structure around smaller guest molecules. The most common guest molecules are methane, ethane, propane, i-butane, n-butane, nitrogen, carbon dioxide, and hydrogen sulfide. Three different hydrate structures are known, namely as sI, sII and sH. The two most common structures in raw and sales gas transmission pipelines are sI and sII. 2

Gas Hydrate 3

Type sI formed by smaller gas molecules such as methane, ethane, hydrogen sulfide, and carbon dioxide. Type sII formed by larger gas molecules such as propane and i-butane. However, nitrogen, a relatively small molecule, also forms a type sII. The hydrate structure formed by natural gas, may change from sII, at low temperatures and pressures, to sI, at high pressures and temperatures. 4

Gas Hydrate It should be noted that n-butane does form a hydrate, but is very unstable. However, it will form a stabilized hydrate in the presence of small “help” gases such as methane or nitrogen. It has been assumed that normal paraffin molecules larger than n-butane are nonhydrate formers. Some isoparaffins and cycloalkanes larger than pentane are known to form sH hydrates. 5

Gas Hydrate Note that free water is not necessary for hydrate formation, but it certainly enhances hydrate formation. For any particular composition of gas at a given pressure, there is a temperature below which hydrates will form and above which hydrates will not form. As the pressure increases, the hydrate formation temperature also increases. As a general rule, when the pressure of the gas stream increases or as the gas becomes colder, the tendency to form hydrates increases. 6

Gas Hydrate Although gas hydrates may be of potential benefit both as an important source of hydrocarbon energy and as a means of storing and transmitting natural gas, they represent a severe operational problem, as the hydrate crystals may deposit on the pipe wall and accumulate as large plugs that can completely block pipelines, shutting in production. In gas pipeline transmission to prevent hydrate formation, usually two common methods, namely thermal and chemical, are used. 7

Gas Hydrate Prediction of Hydrate Formation Conditions There are numerous methods available for predicting hydrate formation conditions. Two popular methods for rapid estimation of hydrate formation conditions and one basic method used in computer softwares are discussed here. K-Factor Method: This method was developed originally by Carson and Katz (1942), although additional data and charts have been reproduced since then. In this method, the hydrate temperature can be predicted using equilibrium constants (K-Factor). 8

Gas Hydrate K- Factor Method The basic equation for this prediction is where y i is mole fraction of component i in gas on a water-free basis, K i is vapor–solid equilibrium constant for component i, and n is number of components. The calculation is iterative and the incipient solid formation point will determine when the aforementioned equation is satisfied. This method gives reasonable results for sweet natural gases and has been proven to be appropriate up to about 1000 psia. 9

Gas Hydrate K- Factor Method The vapor–solid equilibrium constant is determined experimentally and is defined as the ratio of the mole fraction of the hydrocarbon component in gas on a water-free basis to the mole fraction of the hydrocarbon component in the solid on a water-free basis (K i = y i /x i, Figures 1 through 7). Figures 1 through 7 For nitrogen and components heavier than butane, the equilibrium constant is taken as infinity. Theoretically, this assumption is not correct, but from a practical viewpoint provides acceptable engineering results. 10

Gas Hydrate Gas Gravity Method Gas Gravity Method: This method can be used when the gas composition is not known (Katz chart ). The Katz’s method is an appropriate method of estimating hydrate formation conditions for sweet natural gas mixtures.Katz chart As a first step to predict hydrate formation temperature, one can develop an appropriate equation representing the Katz gravity chart (Towler and Mokhatab, 2005): 11

Gas Hydrate Van der Waals and Platteeuw Method 12 In Van der Waals and Platteeuw (1959) method (modified by Parrish and Prausnitz-1972) two stage is assumed for hydrate formation. In the first stage, the empty hydrate lattice is generated by pure water. In the second stage, the cavities are filled by guest molecules.

Gas Hydrate Van der Waals and Platteeuw Method 13 The chemical potential of water in filled hydrate structure (μ w H ) is calculated by using statistical thermodynamics as follows: Where μ w β = the chemical potential of water in empty hydrate structure n ci = number of cavities of type i per water molecule in basic lattice θ ji = fractional occupancy of type i cavity by type j molecule

Gas Hydrate Van der Waals and Platteeuw Method 14 The fractional occupancy of hydrate cavities can be calculated by using Langmuir adsorption theory: Where C ji = the Langmuir constant of type j molecule in type i cavity f j = the fugacity of type j molecule in the gas phase and can be calculated by using an equation of state such as PR

Gas Hydrate Van der Waals and Platteeuw Method 15 The Langmuir constant is the key parameter of van der Waals - Platteeuw model, which depends on the interaction potential between guest molecule and water molecules and can be calculated as follows: Where R = the average redius of type i cavity w = the potential interaction function between the guest molecule and cavity, commonly represented by Lennard – Jones or Kihara potential function.

Gas Hydrate Van der Waals and Platteeuw Method 16 The chemical potential of water in empty hydrate structure (μ w β ) and in liquid phase (μ w L ) are calculated by using classical thermodynamics as follows : Where h w, v w and a w are enthalpy, volume and activity of water and superscripts β, L and L pure are empty hydrate, liquid and pure liquid, respectively.

Gas Hydrate Van der Waals and Platteeuw Method 17 At equilibrium, the chemical potential of water in the filled hydrate structure (μ w H ) must be equal to the chemical potential of water in the liquid phase (μ w L ). Therefore, the equilibruim temperature or pressure of hydrate formation can be calculated by try and error from equations 1-5, based on the above rule. In AspenHysys or Aspen plus a modified version of van der Waals – Platteeuw method was used for calculating the hydrate formation conditions.

Gas Hydrate Example 18 For a mixture of natural gas with the following composition calculate the equilibrium conditions (pressure and temperature) of hydrate formation using the HYSYS software. Use the experimental data of this paper for comparison: Jager and Sloan, 4 th International Conference of Gas Hydrate, Yokahama, Japan (2002). methaneethanepropanei-butane n-butanei-pentanen-pentanen-hexane n-heptanenitrogencarbon dioxide Mole percent of natural gas

Figure 1. Vapor–solid equilibrium constants for methane (GPSA, 1998).

Figure 2. Vapor–solid equilibrium constants for ethane (GPSA, 1998).

Figure 3. Vapor–solid equilibrium constants for propane (GPSA, 1998).

Figure 4. Vapor–solid equilibrium constants for i-butane (GPSA, 1998).

Figure 5. Vapor–solid equilibrium constants for n-butane (GPSA, 1998).

Figure 6. Vapor–solid equilibrium constants for CO 2 (GPSA, 1998).

Figure 7. Vapor–solid equilibrium constants for H 2 S (GPSA, 1998).

Figure 8. Katz’s gravity chart for predicting hydrate formation conditions (GPSA, 1998).