The Randomization Repertoire Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopThe Randomization Repertoire1.

Slides:



Advertisements
Similar presentations
On allocations that maximize fairness Uriel Feige Microsoft Research and Weizmann Institute.
Advertisements

Approximation Algorithms Chapter 14: Rounding Applied to Set Cover.
Approximation, Chance and Networks Lecture Notes BISS 2005, Bertinoro March Alessandro Panconesi University La Sapienza of Rome.
1/17 Deterministic Discrepancy Minimization Nikhil Bansal (TU Eindhoven) Joel Spencer (NYU)
Approximation Algorithms for Capacitated Set Cover Ravishankar Krishnaswamy (joint work with Nikhil Bansal and Barna Saha)
All-or-Nothing Multicommodity Flow Chandra Chekuri Sanjeev Khanna Bruce Shepherd Bell Labs U. Penn Bell Labs.
Dependent Randomized Rounding in Matroid Polytopes (& Related Results) Chandra Chekuri Jan VondrakRico Zenklusen Univ. of Illinois IBM ResearchMIT.
Randomized Algorithms Randomized Algorithms CS648 Lecture 8 Tools for bounding deviation of a random variable Markov’s Inequality Chernoff Bound Lecture.
Analysis of Network Diffusion and Distributed Network Algorithms Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization.
Approximation Algoirthms: Semidefinite Programming Lecture 19: Mar 22.
Instructor Neelima Gupta Table of Contents Lp –rounding Dual Fitting LP-Duality.
Approximation Algorithms
Interval packing problem Multicommodity demand flow in a line Jian Li Sep
Semidefinite Programming
1 Optimization problems such as MAXSAT, MIN NODE COVER, MAX INDEPENDENT SET, MAX CLIQUE, MIN SET COVER, TSP, KNAPSACK, BINPACKING do not have a polynomial.
Randomized Algorithms and Randomized Rounding Lecture 21: April 13 G n 2 leaves
Approximation Algorithm: Iterative Rounding Lecture 15: March 9.
Network Design Adam Meyerson Carnegie-Mellon University.
Implicit Hitting Set Problems Richard M. Karp Harvard University August 29, 2011.
Approximation Algorithms
Provably Good Global Buffering Using an Available Buffer Block Plan F. F. Dragan (Kent) A. B. Kahng (UCLA) I. Mandoiu (Gatech) S. Muddu (Silicon graphics)
On the Crossing Spanning Tree Vineet Goyal Joint work with Vittorio Bilo, R. Ravi and Mohit Singh.
Job Scheduling Lecture 19: March 19. Job Scheduling: Unrelated Multiple Machines There are n jobs, each job has: a processing time p(i,j) (the time to.
Building Edge-Failure Resilient Networks Chandra Chekuri Bell Labs Anupam Gupta Bell Labs ! CMU Amit Kumar Cornell ! Bell Labs Seffi Naor, Danny Raz Technion.
Integer Programming Difference from linear programming –Variables x i must take on integral values, not real values Lots of interesting problems can be.
Two Discrete Optimization Problems Problem #2: The Minimum Cost Spanning Tree Problem.
Linear Programming – Max Flow – Min Cut Orgad Keller.
1 Introduction to Approximation Algorithms Lecture 15: Mar 5.
ECE669 L10: Graph Applications March 2, 2004 ECE 669 Parallel Computer Architecture Lecture 10 Graph Applications.
Multipath Routing Algorithms for Congestion Minimization Ron Banner and Ariel Orda Department of Electrical Engineering Technion- Israel Institute of Technology.
A General Approach to Online Network Optimization Problems Seffi Naor Computer Science Dept. Technion Haifa, Israel Joint work: Noga Alon, Yossi Azar,
Approximation Algorithms: Bristol Summer School 2008 Seffi Naor Computer Science Dept. Technion Haifa, Israel TexPoint fonts used in EMF. Read the TexPoint.
1 Lecture 4 Maximal Flow Problems Set Covering Problems.
Approximation Algorithms for Stochastic Combinatorial Optimization Part I: Multistage problems Anupam Gupta Carnegie Mellon University.
The Multiplicative Weights Update Method Based on Arora, Hazan & Kale (2005) Mashor Housh Oded Cats Advanced simulation methods Prof. Rubinstein.
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
CS774. Markov Random Field : Theory and Application Lecture 13 Kyomin Jung KAIST Oct
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
Distributed Algorithms Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopDistributed Algorithms1.
Approximation Algorithms
Computer Science Day 2013, May Distinguished Lecture: Andy Yao, Tsinghua University Welcome and the 'Lecturer of the Year' award.
Spanning and Sparsifying Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopSpanning and Sparsifying1.
Another story on Multi-commodity Flows and its “dual” Network Monitoring Rohit Khandekar IBM Watson Joint work with Baruch Awerbuch JHU TexPoint fonts.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
Percolation Processes Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopPercolation Processes1.
Linear Program Set Cover. Given a universe U of n elements, a collection of subsets of U, S = {S 1,…, S k }, and a cost function c: S → Q +. Find a minimum.
Implicit Hitting Set Problems Richard M. Karp Erick Moreno Centeno DIMACS 20 th Anniversary.
New algorithms for Disjoint Paths and Routing Problems
Lecture.6. Table of Contents Lp –rounding Dual Fitting LP-Duality.
Unique Games Approximation Amit Weinstein Complexity Seminar, Fall 2006 Based on: “Near Optimal Algorithms for Unique Games" by M. Charikar, K. Makarychev,
A Unified Continuous Greedy Algorithm for Submodular Maximization Moran Feldman Roy SchwartzJoseph (Seffi) Naor Technion – Israel Institute of Technology.
Improved Approximation Algorithms for Directed Steiner Forest Moran Feldman Technion Joint work with: Guy Kortsarz,Rutgers University Camden Zeev Nutov,The.
Deterministic Algorithms for Submodular Maximization Problems Moran Feldman The Open University of Israel Joint work with Niv Buchbinder.
Maximizing Symmetric Submodular Functions Moran Feldman EPFL.
Iterative Rounding in Graph Connectivity Problems Kamal Jain ex- Georgia Techie Microsoft Research Some slides borrowed from Lap Chi Lau.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Approximation Algorithms based on linear programming.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Approximation algorithms
Theory of Computational Complexity Probability and Computing Chapter Hikaru Inada Iwama and Ito lab M1.
Constraint-Based Routing
Approximation algorithms
Bin Fu Department of Computer Science
Distributed Network Measurements
Chapter 1. Formulations (BW)
Chapter 1. Formulations.
Discrete Optimization
Presentation transcript:

The Randomization Repertoire Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopThe Randomization Repertoire1

Randomization in Network Optimization Very important toolkit: – Often simple routines yielding the best known approximations to hard optimization problems – Often efficient in practice However, no separation known between randomization and determinism – Quite likely that “P = RP” – Most randomized algorithms have been derandomized In distributed computing environments, randomization can provably help Chennai Network Optimization WorkshopThe Randomization Repertoire2

Outline Basic tools from probability theory – Chernoff-type bounds Randomized rounding – Set cover – Unsplittable multi-commodity flow Dependent rounding – Multi-path multi-commodity flow Randomization in distributed computing – Maximal independent set Chennai Network Optimization WorkshopThe Randomization Repertoire3

Basic Probability Linearity of expectation: For any random variables X 1, X 2, …, X n, we have – E[Σ i X i ] = Σ i E[X i] Markov’s inequality: For any random variable X – Pr[X ≥ c] ≤ E[X]/c Union bound: For any sequence of events E 1, E 2, …, E n, we have – Pr[U i E i ] ≤ Σ i Pr[E i ] Chennai Network Optimization WorkshopThe Randomization Repertoire4

Basic Probability: Large Deviations Chebyshev inequality: For any random variable X with mean μ and standard deviation σ Applies to any random variable Can be used to effectively bound large deviation for sum of pairwise independent random variables Chennai Network Optimization WorkshopThe Randomization Repertoire5

Chernoff Bound Let X 1, X 2,..., X n be n independent random variables in {0,1} For any nonnegative δ For any δ in [0,1] Chennai Network Optimization WorkshopThe Randomization Repertoire6

Chernoff Bound Extensions Chernoff-Hoeffding bounds – For real-valued variables Bounds extend to negatively correlated variables Partial and almost independence [Schmidt-Siegel- Srinivasan 95,…] – k-wise and almost k-wise independence Azuma’s inequality for martingales [Alon-Spencer 91, Motwani-Raghavan, Mitzenmacher-Upfal 04] Matrix Chernoff bounds for random matrices [Ahlswede- Winter 02, Rudelson-Vershynin 07, Tropp 11] Chennai Network Optimization WorkshopThe Randomization Repertoire7

Randomized Rounding Write integer program for optimization problem Relax integrality constraint: often from {0,1} to [0,1] View relaxed variables as probabilities Round the variables to {0,1} according to corresponding probability – In most basic form, do this independently for each variable – Many rounding algorithms are much more sophisticated – Formulating the appropriate math program is also often a major contribution [Raghavan-Thompson 87] Chennai Network Optimization WorkshopThe Randomization Repertoire8

Randomized Rounding Algorithms Multi-commodity flow [Raghavan-Thompson 87] MAXSAT [Goemans-Williamson 94] Group Steiner tree [Garg-Konjevod-Ravi 98] MAXCUT [Goemans-Williamson 95] Chennai Network Optimization WorkshopThe Randomization Repertoire9

Set Cover Given a universe U = {e 1,e 2,…,e n } of elements, a collection of m subsets of U, and a cost c(S) for each subset S, determine the minimum- cost collection of subsets that covers U Chennai Network Optimization WorkshopThe Randomization Repertoire10

Set Cover LP Relaxation Given a universe U = {e 1,e 2,…,e n } of elements, a collection of m subsets of U, and a cost c(S) for each subset S, determine the minimum- cost collection of subsets that covers U Chennai Network Optimization WorkshopThe Randomization Repertoire11

Randomized Rounding for Set Cover Let OPT be the value of the LP – Optimal set cover cost ≥ OPT ROUND: Select each S with probability x(S) Claim: Expected cost of solution is OPT – Linearity of expectation Claim: Pr[element f is covered] ≥ 1-1/e Repeat ROUND Θ(log(n)) times – With probability at least 1-1/n, cost is O(OPT log(n)) and every element is covered [Vazirani 03] Chennai Network Optimization WorkshopThe Randomization Repertoire12

Unsplittable Multi-commodity Flow Given: – Directed graph G = (V,E) with capacity nonnegative capacity c(f) for each edge f – Demand pairs (s i,t i ) with demand d i Goal: Choose one path for each pair so as to minimize relative congestion Basic randomized rounding achieves near-optimal approximation [Raghavan-Thompson 87] Chennai Network Optimization WorkshopThe Randomization Repertoire13

Multi-path Multi-commodity Flow Same setup as the original multi-commodity flow problem, except – Instead of 1 path, need r i paths for ith pair Basic randomized rounding does not ensure the above constraint Can refine it to achieve a reasonably good approximation Dependent rounding achieves near-optimal result [Gandhi-Khuller-Parthasarthy-Srinivasan 05] Chennai Network Optimization WorkshopThe Randomization Repertoire14

Randomization in Distributed Computing A number of distributed computing tasks need “local algorithms” to compute globally good solutions – Maximal independent set – Minimum dominating set Easy best-possible greedy algorithms – Inherently sequential – Place an ordering on the nodes How to compute in a distributed setting? – At the cost of a small factor, can work with an approximate order – Challenge: Break symmetry among competing nodes [Luby 86] Chennai Network Optimization WorkshopThe Randomization Repertoire15