Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved. 0132130807 1 Fall 2013.

Slides:



Advertisements
Similar presentations
Arrays. What is an array An array is used to store a collection of data It is a collection of variables of the same type.
Advertisements

Liang, Introduction to Java Programming, Sixth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Chapter 7 Arrays.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 8 Multidimensional.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 7 Multidimensional.
INF120 Basics in JAVA Programming AUBG, COS dept, Spring 2014 Lecture 10 Title: Arrays, Part 2 Multidimensional Arrays Reference: MalikFarrell, chap 1,
Introduction to Arrays in Java Corresponds with Chapter 6 of textbook.
The basics of the array data structure. Storing information Computer programs (and humans) cannot operate without information. Example: The array data.
1 Chapter 8 Multi-Dimensional Arrays. 2 1-Dimentional and 2-Dimentional Arrays In the previous chapter we used 1-dimensional arrays to model linear collections.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All rights reserved Searching Arrays Searching.
Programming Fundamentals I (COSC-1336), Lecture 8 (prepared after Chapter 7 of Liang’s 2011 textbook) Stefan Andrei 4/23/2017 COSC-1336, Lecture 8.
Java Programming: From Problem Analysis to Program Design, 4e
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All rights reserved. 1 Chapter 8 Multidimensional Arrays.
Chapter 9: Arrays J ava P rogramming: From Problem Analysis to Program Design, From Problem Analysis to Program Design, Second Edition Second Edition.
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All rights reserved. 1 Chapter 8 Multidimensional Arrays Lecture.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 7 Multidimensional.
Liang, Introduction to Java Programming1 Arrays Gang Qian Department of Computer Science University of Central Oklahoma.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved
CHAPTER: 12. Array is a collection of variables of the same data type that are referenced by a common name. An Array of 10 Elements of type double.
8-1 Chapter 8: Arrays Arrays are objects that help us organize large amounts of information Today we will focuses on: –array declaration and use –bounds.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 7 Multidimensional.
© Copyright 2013 by Pearson Education, Inc. All Rights Reserved. 1 Chapter 8 Multidimensional Arrays.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to C++ Programming, (c) 2007 Pearson Education, Inc. All rights reserved X 1 Chapter 6 Arrays.
1 Array basics. Data Structures Sometimes, we have data that have some natural structure to them  A few examples: Texts are sequences of characters Images.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
CiS 260: App Dev I. 2 Introduction to Arrays n An array is an object that contains a collection of components (_________) of the same data type. n For.
CiS 260: App Dev I. 2 Introduction to Arrays n An array is an object that contains a collection of components (_________) of the same data type. n For.
Java Programming: Chapter 9: Arrays
Arrays in java Unit-1 Introduction to Java. Array There are situations where we might wish to store a group of similar type of values in a variable. Array.
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1 Chapter 11 Lists for Multi-dimensional Data.
 Introducing Arrays  Declaring Array Variables, Creating Arrays, and Initializing Arrays  Copying Arrays  Multidimensional Arrays  Search and Sorting.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 6 Multidimensional.
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 6 Arrays 1.
CS 201 Tarik Booker California State University, Los Angeles.
Chapter 9 Introduction to Arrays Fundamentals of Java.
Two-Dimensional Data Class of 5 students Each student has 3 test scores Store this information in a two- dimensional array First dimension: which student.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved. 1 Chapter 7 Multidimensional Arrays.
Chapter 5 Arrays F Introducing Arrays F Declaring Array Variables, Creating Arrays, and Initializing Arrays F Passing Arrays to Methods F Copying Arrays.
INF120 Basics in JAVA Programming AUBG, COS dept Lecture 07 Title: Methods, part 1 Reference: MalikFarrell, chap 1, Liang Ch 5.
1 Arrays and Variable Length Parameter List  The syntax to declare a variable length formal parameter (list) is: dataType... identifier.
Chapter 9: Arrays J ava P rogramming: From Problem Analysis to Program Design, From Problem Analysis to Program Design,
1 Chapter 7 Multidimensional Arrays. 2 Motivations You can use a two-dimensional array to represent a matrix or a table.
Write code to prompt for 5 grades, read them in, print “Thank you”, then reprint the 5 grades and their average. System.out.println(“Please enter grade.
Chapter 8 Multidimensional Arrays
Chapter 7 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Motivations Thus far, you have used one-dimensional arrays to model linear collections of elements. You can use a two-dimensional array to represent a.
Case Study 2 – Marking a Multiple-choice Test
TK1114 Computer Programming
Chapter 6 Arrays.
Chapter 8 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Chapter 8 Multi-Dimensional Arrays
Chapter 7 Multidimensional Arrays
Chapter 5 Arrays Introducing Arrays
Chapter 8 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Chapter 7 Multidimensional Arrays
Chapter 7 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Chapter 7 Multidimensional Arrays
Chapter 8 Multidimensional Arrays
Presentation transcript:

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Fall 2013

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Thus far, you have used one-dimensional arrays to model linear collections of elements. You can use a two-dimensional array to represent a matrix or a table. For example, the following table that describes the distances between the cities can be represented using a two-dimensional array. 2

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved  To give examples of representing data using two-dimensional arrays (§7.1).  To declare variables for two-dimensional arrays, create arrays, and access array elements in a two-dimensional array using row and column indexes (§7.2).  To program common operations for two-dimensional arrays (displaying arrays, summing all elements, finding min and max elements, and random shuffling) (§7.3).  To pass two-dimensional arrays to methods (§7.4).  To write a program for grading multiple-choice questions using two-dimensional arrays (§7.5).  To solve the closest-pair problem using two-dimensional arrays (§7.6).  To check a Sudoku solution using two-dimensional arrays (§7.7).  To use multidimensional arrays (§7.8). 3

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved // Declare array ref var dataType[][] refVar; // Create array and assign its reference to variable refVar = new dataType[10][10]; // Combine declaration and creation in one statement dataType[][] refVar = new dataType[10][10]; // Alternative syntax dataType refVar[][] = new dataType[10][10]; 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved int[][] matrix = new int[10][10]; or int matrix[][] = new int[10][10]; matrix[0][0] = 3; for (int i = 0; i < matrix.length; i++) for (int j = 0; j < matrix[i].length; j++) matrix[i][j] = (int)(Math.random() * 1000); double[][] x; 5

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved array.length? 4 array[0].length? 3 matrix.length? 5 matrix[0].length? 5

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved You can also use an array initializer to declare, create and initialize a two-dimensional array. For example, 7 int[][] array = new int[4][3]; array[0][0] = 1; array[0][1] = 2; array[0][2] = 3; array[1][0] = 4; array[1][1] = 5; array[1][2] = 6; array[2][0] = 7; array[2][1] = 8; array[2][2] = 9; array[3][0] = 10; array[3][1] = 11; array[3][2] = 12; int[][] array = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12} }; Same as

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved int[][] x = new int[3][4]; 8

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved int[][] array = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12} }; 9 array.length array[0].length array[1].length array[2].length array[3].length array[4].length ArrayIndexOutOfBoundsException

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Each row in a two-dimensional array is itself an array. So, the rows can have different lengths. Such an array is known as a ragged array. For example, int[][] matrix = { {1, 2, 3, 4, 5}, {2, 3, 4, 5}, {3, 4, 5}, {4, 5}, {5} }; 10 matrix.length is 5 matrix[0].length is 5 matrix[1].length is 4 matrix[2].length is 3 matrix[3].length is 2 matrix[4].length is 1

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved See the examples in the text. 1. (Initializing arrays with input values) 2. (Printing arrays) 3. (Summing all elements) 4. (Summing all elements by column) 5. (Which row has the largest sum) 6. (Finding the smallest index of the largest element) 7. ( Random shuffling ) 12

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved java.util.Scanner input = new Scanner(System.in); System.out.println("Enter " + matrix.length + " rows and " + matrix[0].length + " columns: "); for ( int row = 0; row < matrix.length; row++) { for ( int column = 0; column < matrix[row].length; column++) { matrix[row][column] = input.nextInt(); } 13

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved for ( int row = 0; row < matrix.length; row++) { for ( int column = 0; column < matrix[row].length; column++) { matrix[row][column] = ( int )(Math.random() * 100); } 14

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved for ( int row = 0; row < matrix.length; row++) { for ( int column = 0; column < matrix[row].length; column++) { System.out.print(matrix[row][column] + " "); } System.out.println(); } 15

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved int total = 0; for ( int row = 0; row < matrix.length; row++) { for ( int column = 0; column < matrix[row].length; column++) { total += matrix[row][column]; } 16

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved for (int column = 0; column < matrix[0].length; column++) { int total = 0; for (int row = 0; row < matrix.length; row++) total += matrix[row][column]; System.out.println("Sum for column " + column + " is " + total); } 17

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved for ( int i = 0; i < matrix.length; i++) { for ( int j = 0; j < matrix[i].length; j++) { int i1 = ( int )(Math.random() * matrix.length); int j1 = ( int )(Math.random() * matrix[i].length); // Swap matrix[i][j] with matrix[i1][j1] int temp = matrix[i][j]; matrix[i][j] = matrix[i1][j1]; matrix[i1][j1] = temp; } 18

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved PassTwoDimensionalArray Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved import java.util.Scanner; public class PassTwoDimensionalArray { public static void main(String[] args) { // Create a Scanner Scanner input = new Scanner(System.in); // Enter array values int[][] m = new int[3][4]; System.out.println("Enter " + m.length + " rows and " + m[0].length + " columns: "); for (int i = 0; i < m.length; i++) for (int j = 0; j < m[i].length; j++) m[i][j] = input.nextInt(); // Display result System.out.println("\nSum of all elements is " + sum(m)); } public static int sum(int[][] m) { int total = 0; for (int row = 0; row < m.length; row++) { for (int column = 0; column < m[row].length; column++) { total += m[row][column]; } return total; }

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved  Objective: write a program that grades multiple- choice test. 21 GradeExamRun

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved  Two data structures needed  Data structure to store exam key  One dimensional array  Each entry is associated with question number (10 questions) char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D'};  Data structure to store students’ answers  Two dimensional array  Each row represents a student (8 students)  Each column represents the students’ answer for that column question (10 questions) char[][] answers = { {'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'}, {'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'}, {'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'}, {'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}}; 22

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved public class GradeExam { /** Main method */ public static void main(String args[]) { // Students' answers to the questions char[][] answers = { {'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'}, {'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'}, {'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'}, {'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}, {'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}}; // Key to the questions char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D'}; // Grade all answers for (int i = 0; i < answers.length; i++) { // Grade one student int correctCount = 0; for (int j = 0; j < answers[i].length; j++) { if (answers[i][j] == keys[j]) correctCount++; } System.out.println("Student " + i + "'s correct count is " + correctCount); }

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved FindNearestPoints Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved  Find the two points that are nearest to each other  Need to input the points  Get the number of points int numberOfPoints = input.nextInt();  Now create the two dimensional array to store the values (each point has two values, x and y) double[][] points = new double[numberOfPoints][2];  Next enter the points  Get the distance between each point, choose the two points with the smallest distance Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); 25

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved import java.util.Scanner; public class FindNearestPoints { public static void main(String[] args) { Scanner input = new Scanner(System.in); System.out.print("Enter the number of points: "); int numberOfPoints = input.nextInt(); // Create an array to store points double[][] points = new double[numberOfPoints][2]; System.out.print("Enter " + numberOfPoints + " points: "); for (int i = 0; i < points.length; i++) { points[i][0] = input.nextDouble(); points[i][1] = input.nextDouble(); } // p1 and p2 are the indices in the points array int p1 = 0, p2 = 1; // Initial two points double shortestDistance = distance(points[p1][0], points[p1][1], points[p2][0], points[p2][1]); // Initialize shortestDistance // Compute distance for every two points for (int i = 0; i < points.length; i++) { for (int j = i + 1; j < points.length; j++) { double distance = distance(points[i][0], points[i][1], points[j][0], points[j][1]); // Find distance if (shortestDistance > distance) { p1 = i; // Update p1 p2 = j; // Update p2 shortestDistance = distance; // Update shortestDistance } // Display result System.out.println("The closest two points are " + "(" + points[p1][0] + ", " + points[p1][1] + ") and (" + points[p2][0] + ", " + points[p2][1] + ")"); } /** Compute the distance between two points (x1, y1) and (x2, y2)*/ public static double distance( double x1, double y1, double x2, double y2) { return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); }

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved RunCheckSudokuSolution

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved import java.util.Scanner; public class CheckSudokuSolution { public static void main(String[] args) { // Read a Sudoku solution int[][] grid = readASolution(); System.out.println(isValid(grid) ? "Valid solution" : "Invalid solution"); } /** Read a Sudoku solution from the console */ public static int[][] readASolution() { // Create a Scanner Scanner input = new Scanner(System.in); System.out.println("Enter a Sudoku puzzle solution:"); int[][] grid = new int[9][9]; for (int i = 0; i < 9; i++) for (int j = 0; j < 9; j++) grid[i][j] = input.nextInt(); return grid; } /** Check whether a solution is valid */ public static boolean isValid(int[][] grid) { for (int i = 0; i < 9; i++) for (int j = 0; j < 9; j++) if (grid[i][j] 9 || !isValid(i, j, grid)) return false; return true; // The fixed cells are valid } /** Check whether grid[i][j] is valid in the grid */ public static boolean isValid(int i, int j, int[][] grid) { // Check whether grid[i][j] is valid at the i's row for (int column = 0; column < 9; column++) if (column != j && grid[i][column] == grid[i][j]) return false; // Check whether grid[i][j] is valid at the j's column for (int row = 0; row < 9; row++) if (row != i && grid[row][j] == grid[i][j]) return false; // Check whether grid[i][j] is valid in the 3 by 3 box for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++) for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++) if (row != i && col != j && grid[row][col] == grid[i][j]) return false; return true; // The current value at grid[i][j] is valid }

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Occasionally, you will need to represent n- dimensional data structures. In Java, you can create n-dimensional arrays for any integer n. The way to declare two-dimensional array variables and create two-dimensional arrays can be generalized to declare n-dimensional array variables and create n-dimensional arrays for n >= 3. For example, the following syntax declares a three- dimensional array variable scores, creates an array, and assigns its reference to scores. double[][][] scores = new double[10][5][2]; 33

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved  Objective: write a program that calculates the total score for students in a class. Suppose the scores are stored in a three-dimensional array named scores. The first index in scores refers to a student, the second refers to an exam, and the third refers to the part of the exam. Suppose there are 7 students, 5 exams, and each exam has two parts--the multiple-choice part and the programming part. So, scores[i][j][0] represents the score on the multiple-choice part for the i’s student on the j’s exam. Your program displays the total score for each student. 34 TotalScoreRun

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved public class TotalScore { /** Main method */ public static void main(String args[]) { double[][][] scores = { {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}}, {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}}, {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}}, {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}}, {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}}, {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}, {{1.5, 29.5}, {6.4, 22.5}, {14, 30.5}, {10, 30.5}, {16, 6.0}}}; // Calculate and display total score for each student for (int i = 0; i < scores.length; i++) { double totalScore = 0; for (int j = 0; j < scores[i].length; j++) for (int k = 0; k < scores[i][j].length; k++) totalScore += scores[i][j][k]; System.out.println("Student " + i + "'s score is " + totalScore); }