Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Penser la musique dans la logique fonctorielle.

Slides:



Advertisements
Similar presentations
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Signes, pointeurs et schémas de concepts pour.
Advertisements

Guerino Mazzola U & ETH Zürich Modular and Dynamic Concepts for the Internet Institute for Music Science Modular.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Just and Well-tempered Modulation Theory Just.
Guerino Mazzola (Fall 2014 © ): Honors Seminar III.1The Axis of Semiotics III.1.1 (F Sept 26) Generalities about Signs and Music.
Degenerations of algebras. José-Antonio de la Peña UNAM, México Advanced School and Conference on Homological and Geometrical Methods in Representation.
Hot topics in Modern Cosmology Cargèse - 10 Mai 2011.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science architecture du livre „The Topos of Music“
Realism with respect to Universals Ingvar Johansson, Institute for Formal Ontology and Medical Information Science, Saarbrücken
Guerino Mazzola (Spring 2015 © ): Math for Music Theorists Modeling Tonal Modulation.
PART 2 Fuzzy sets vs crisp sets
Theory and Applications
Schemas as Toposes Steven Vickers Department of Pure Mathematics Open University Z schemas – specification1st order theories – logic geometric theories.
Lecture 3 Operations on Sets CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
PHY 042: Electricity and Magnetism Introduction Prof. Pierre-Hugues Beauchemin.
Meaningful Modeling: What’s the Semantics of “Semantics”? David Harel, Weizmann Institute of Science Bernhard Rumpe, Technische Universität Braunschweig.
Modeling of interactions between physics and mathematics
The Relationship between Topology and Logic Dr Christopher Townsend (Open University)
An Introduction to Field and Gauge Theories
Human Evolution II Session Life A multidisciplinary anthropic focus.
Category Theory By: Ashley Reynolds. HISTORY OF CATEGORY THEORY  In 1942–45, Samuel Eilenberg and Saunders Mac Lane introduced categories, functors,
Physics 311 Classical Mechanics Welcome! Syllabus. Discussion of Classical Mechanics. Topics to be Covered. The Role of Classical Mechanics in Physics.
 Origins in PRESTO, and early computer application developed by Guerino Mazzola.  RUBATO is a universal music software environment developed since 1992.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Models of Tonal Modulation and.
RUBATO composer Seminar Guerino Mazzola U Minnesota & Zürich Guerino.
Theoretical Physics Textbook: –I.D.Lawrie, “A Unified Grand Tour in Theoretical Physics”, 2 nd ed., IOP (90,02) References: –B.F.Schutz, “Geometrical Methods.
Vectors CHAPTER 7. Ch7_2 Contents  7.1 Vectors in 2-Space 7.1 Vectors in 2-Space  7.2 Vectors in 3-Space 7.2 Vectors in 3-Space  7.3 Dot Product 7.3.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Music Theory — Status Quo 2000.
1 Symmetry and Physics. 2 1.Origin 2.Greeks 3.Copernicus & Kepler 4.19th century 5.20th century.
Guerino Mazzola (Fall 2015 © ): Honors Seminar III.1The Axis of Semiotics III.1.2 (F Oct 29) Sign Systems.
Guerino Mazzola U & ETH Zürich Guerino Mazzola U & ETH Zürich
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
Theory and Applications
Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘
Musical Gestures and their Diagrammatic Logic Musical Gestures and their Diagrammatic Logic Guerino Mazzola U & ETH Zürich U & ETH Zürich
Guerino Mazzola U & ETH Zürich U & ETH Zürich Global Networks in Computer Science? Global Networks in Computer.
Guerino Mazzola (Fall 2015 © ): Introduction to Music Technology I INTRODUCTION I.3 (Fr Sept 11) Oniontology: Examples.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Performance and Interpretation Performance.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Operators on Vector Fields of Genealogical.
Fundamental principles of particle physics G.Ross, CERN, July08.
Guerino Mazzola (Fall 2015 © ): Introduction to Music Technology IIISymbolic Reality III.2 (We Nov 16) Denotators I—definition of a universal concept space.
The inverse variational problem in nonholonomic mechanics
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Les mathématiques de l‘interprétation musicale:
AHSGE MATHEMATICS PRACTICE SESSION. STANDARD I: The student will be able to perform basic operations on algebraic expressions. OBJECTIVE 1. Apply order.
Guerino Mazzola Roger Fischlin, Stefan Göller: U Zürich Claudio Vaccani, Sylvan Saxer: ETH Zürich The Internet.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 2.4 Venn Diagrams with Three Sets and Verification of Equality of Sets.
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
Chapter 36 The Special Theory of Relativity (Special Relativity Principle)
Guerino Mazzola U & ETH Zürich Topos Theory for Musical Networks Topos Theory for Musical Networks.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Towards „Grand Unification“ Of Musiacl Composition,
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Manifolds and Stemmata in Musical Time.
Guerino Mazzola (Spring 2016 © ): Performance Theory III EXPRESSIVE THEORY III.7 (Mo Mar 7) Analytical Expression III.
Peter Richter Institute for Theoretical Physics 1 Iso-Energy Manifolds and Enveloping Surfaces in the Problem of Rigid Body Motions Classical Problems.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions.
Objectives of Curriculum Qulb e Abbas. Taxonomy of educational objectives In which three domains are identified: (i) the cognitive; (ii) the affective.
Prepared By Meri Dedania (AITS) Discrete Mathematics by Meri Dedania Assistant Professor MCA department Atmiya Institute of Technology & Science Yogidham.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
I INTRODUCTION I.3 (Fr Sept 08) Oniontology: Examples.
Florian Girelli: I decided to study the fundamental nature of space-time when finishing high-school. My university/research cursus: Master of Mathematics.
Functions of Complex Variable and Integral Transforms
MAT Classical Mechanics
PHYS 3446 – Lecture #23 Symmetries Why do we care about the symmetry?
Einstein’s Zurich Notebook
III Symbolic Reality III.2 (We Nov 08) Denotators I—definition of a universal concept space and notations.
IV EXPERIMENTS IV.3 (Thu March 29) Modeling tonal modulation.
III Symbolic Reality III.2 (Mo Nov 05) Denotators I—definition of a universal concept space and notations.
PHYS 3446 – Lecture #19 Symmetries Wednesday, Nov. 15, 2006 Dr. Jae Yu
Physics 451/551 Theoretical Mechanics
Gauge theory and gravity
wan ahmad tajuddin wan abdullah jabatan fizik universiti malaya
Presentation transcript:

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Penser la musique dans la logique fonctorielle des topoi Penser la musique dans la logique fonctorielle des topoi

Topographie musicale Stratification sémiotique Models mathématiques Espaces de concepts Fiction et facticité Vérité et beauté Topographie musicale Stratification sémiotique Models mathématiques Espaces de concepts Fiction et facticité Vérité et beauté programme

topographieCommunication Neutral level Poiesis Aisthesis Realities Semiosis Content Physical Mental Psychic Signification Expression

topographieCommunication Aisthesis Neutral level Poiesis

√ H E h e T(E) = (d √ E /dE) -1 [ q /sec] Physical Mental topographie Psychic

Harmonic analysis Semiosis topographie Content Signification Expression G major  E b major Tonal modulation G major  E b major Score „surface“

stratification ExpressionSignificationContent meta system ExpressionSignificationContent ExpressionSignificationContent motivation ExpressionSignificationContent connotation Hjelmslev Stratification

stratification interpretation layer performance fields differential geometry denotator layerformstopoi score layer syn. & para. articulation connotation classical sheaves Stratification on the mental level – – OnsetOnsetLoudnessLoudnessDurationDurationPitchPitch MakroNoteMakroNote MakroNoteMakroNote SatellitesSatellitesAnchorNoteAnchorNote STRG Ÿ

models What is a mathematical model of a musical phenomenon? Field of Concepts Material Selection Process Type Grown rules for process construction and construction and analysis analysis Music Mathematics Deduction of rules from structure theorems Why this material, these rules, relations? Generalization! Anthropic Principle! Precise Concept Framework Instance specification Formal process restatement Proof of structure theorems

Old Tonality Neutral Degrees (I C, VI C ) Modulation Degrees (II F, IV F, VII F ) New Tonality Cadence Degrees (II F & V F ) Arnold Schönberg: Harmonielehre (1911) What is the considered set of tonalities? What is a degree? What is a cadence? What is the modulation mechanism? How do these structures determine the modulation degrees? models

I IVVIIIIIVIVII models

S (3) T (3) gluon strong force W+W+ weak force  electromagnetic force graviton gravitation force = symmetry between S (3) and T (3) quantum = set of pitch classes = M kk models

C (3) E b (3) M (3) VEbVEbVEbVEb VII E b II E b III E b VCVC IV C VII C II C models

concepts Frame( √ ) >> Functor(F) Form F DenotatorsDenotators K K Functor(F) „A-valued point“ D = denotator name A address A K D:A.F(K)D:A.F(K)

concepts F = Form name one of four „space types“ a name diagram √ in Frame( √ ) a monomorphism in id: Functor(F) >  Frame( √ ) Frame( √ )-space for type simple() simple √ = „“  simple( √ ) limit √ = Form-Name-Diagram  limit() = lim(Form-Name-Diagram  ) limit( √ ) = lim(Form-Name-Diagram  ) colimit √ = Form-Name-Diagram  colimit() = colim(Form-Name-Diagram  ) colimit( √ ) = colim(Form-Name-Diagram  ) power √ = Form-Name F  Functor(F) power() =  Functor(F) power( √ ) =  Functor(F) Frame( √ ) >> Functor(F) FormsForms

concepts – – OnsetOnsetLoudnessLoudnessDurationDurationPitchPitch MakroNoteMakroNote MakroNoteMakroNote SatellitesSatellites AnchorNoteAnchorNote STRG Ÿ Ornaments Ornaments Schenker Analysis Schenker Analysis

concepts Galois Theory Field S f S (X) = 0 Form Theory Form System id √ (F) Defining equation Defining diagram x2x2x2x2 x1x1x1x1 xnxnxnxn x3x3x3x3 F2F2F2F2 FrFrFrFr F1F1F1F1

Os X  RUBATO ®    concepts Java Classes for Modules, Forms, and Denotators

Expressions Denotators Sig(Ex i Sig(Ex i ) (Textual) Predicates Sig Ex i D/Ex i Ex k Predicate Expressions facticit éD

What is facticity of predicate Ex at denotator D? D/Ex D/Ex :A.TRUTH(F)(d) TRUTH(F) = space of “subsets” of space F of ‘truth values’ d   F (A) d  x F The coordinate d of a truth denotator D/Ex is a ‚sieve‘ in  x F. The coordinate d of a truth denotator D/Ex is a ‚sieve‘ in  x F. facticit é d A F

Special case 1: I = 0-module Then F = final object = 1 in d   1 (A) =  (A) A = 0: topos-theoretic  (0) = Hom(1,  = set of topos-theoretic truth values = Special values: d =  =  F =  T  d = T facticit é

Special case 2: I = — / Ÿ = S = circle group, F d   F (A) means this: Take again special address A = 0, i.e., d fuzzy logic In particular, if d =  = [0,e[  S an interval, we have fuzzy logic defined by the truth quantity e in the closed unit interval. e S facticit é

The truth denotators D/Ex associated with a predicate Ex local compositions are local compositions at address A and in the truth space F. They generalize and unify the topos-theoretic and fuzzy logic values, and classical objects of music theory. Summary facticit é d A F

1. Arbitrary/Atomic Predicates: Mathematical Musical (Primavista) Deictic (Shifters) 2. Motivated/Compound Predicates: Logical Geometric Classification of Predicate Constructions D/Ex facticit é

beaut é HarmoRUBETTE ®

beaut é RieM D #,d (Chord(222)) =d =  = [0,e[  S RieM D #,d (Chord(222)) = d =  = [0,e[  S TON ={C, F, A #, D #, G #, C #, F #, B, E, A, D, G} TON = {C, F, A #, D #, G #, C #, F #, B, E, A, D, G} val= {T,S, D, t, s, d} S = — / Ÿ A = 0 D #,d T,v = D #,d

beaut é RieN T,v (Chord) = Chord.Ext 0 (M T,v ) RieN T,v (Chord) =  Chord.Ext 0 (M T,v ) M T,v = monoid of all endomorphisms of prototypical triadic chords Ext 0 (M T,v ) = {chords invariant under M T,v } = basic open set in the extension topology TON ={C, F, A #, D #, G #, C #, F #, B, E, A, D, G} TON = {C, F, A #, D #, G #, C #, F #, B, E, A, D, G} Val= {T,S, D, t, s, d, T*,S*, D*, t*, s*, d*} F = Chords ( Ÿ 12 ) TRUTH(F) = sets of chords in F