IGEM 2007 ETH Zurich 04.06.2007. ETH Zurich iGEM Team 2 ETH Zurich team.

Slides:



Advertisements
Similar presentations
Positive Feedback and Bistability BIOE 423: 2013.
Advertisements

Construction of a Suppressor Logic Toolkit and its use in a Bacterial Quasi-Hash Function iGEM 2008 Finisher Team Bob Cool, Kin Lau, Xiao Zhu.
Avin Tamsir, Jeffrey J. Tabor & Christopher A. Voight.
Proto BioCompiler Jacob Beal October, 2011 Work partially sponsored by DARPA; the views and conclusions contained in this document are those of the authors.
Nonlinear & Neural Networks LAB. CHAPTER 11 LATCHES AND FLIP-FLOPS 11.1Introduction 11.2Set-Reset Latch 11.3Gated D Latch 11.4Edge-Triggered D Flip-Flop.
Digital Logic Design Brief introduction to Sequential Circuits and Latches.
Goal Show the modeling process used by both Collins (toggle switch) and Elowitz (repressilator) to inform design of biological network necessary to encode.
Davidson College Synth-Aces Tamar Odle (’08), Oscar Hernandez (’06), Kristen DeCelle (’06), Andrew Drysdale (’07), Matt Gemberling (’06), and Nick Cain.
Repressilator Presentation contents: The idea Experimental overview. The first attemp. The mathematical model. Determination of the appropiate parameters.
ECOLITASTER: Cellular Biosensor Valencia iGEM 2006.
Combinatorial Synthesis of Genetic Networks Guet et. al. Andrew Goodrich Charles Feng.
BioSketchHarvard iGEM BioBrick: Aggregate Parts Quad Part Inverter (QPI) RBS CodingRegion Terminator Promoter RBSTerminator ReporterCodingRegion.
Fundamental Concepts in Genetic Logic Design - Principles of Control, Digital and Analog Devices Medicine 2B 徐廷儀 2009/03/11.
Assigning Numbers to the Arrows Parameterizing a Gene Regulation Network by using Accurate Expression Kinetics.
Unit 11 Latches and Flip-Flops Ku-Yaw Chang Assistant Professor, Department of Computer Science and Information Engineering Da-Yeh.
Encapsulation for Drug Delivery
First Institute of Higher Education in Modern China Since 1895 A World-class, Progressive, and Multidisciplinary Research University.
Design of Digital Logic by Genetic Regulatory Networks Ron Weiss Department of Electrical Engineering Princeton University Computing Beyond Silicon Summer.
VictoriaBC iGEM 2009 Signal Integration: Applications of RNA Riboregulator Capabilities VictoriaBC iGEM 2009 Signal Integration: Applications of RNA Riboregulator.
University of Toronto & University of Waterloo Cells-See-Us Thermometer.
MURI Pattern Detection Circuits
The Programming of a Cell By L Varin and N Kharma Biology and Computer Engineering Departments Concordia University.
Gene repression and activation
Introduction to Chemical Kinetics and Computational Modeling Hana El-Samad Byers Hall (QB3), Rm 403D.
Imperial Starting off: Week 1 Week 1 Engineering/Biology Introduction Lectures Journal Club WikiBrainstorming 3 ideas.
Modeling the Chemical Reactions Involved in Biological Digital Inverters Rick Corley Mentor: Geo Homsy.
1/45. 2/45 1. Tri-Stable Switch 2. Lead Detector 3. iGEM Community.
(+)(+). Team Members Undergraduate Students Aman Arya, Biology (Waterloo) Joseph Chan, Molecular Genetics (Toronto) Hannah Fong, Immunology / Chemistry.
RoSBM Registry of Standard Biological Models Barry Canton (MIT) Vincent Rouilly (Imperial College) Registry Workshop November 2007,Boston.
Imperial College iGEM Jamboree MIT – Nov 4th 2006.
Construction of a Genetic Toggle Switch in Escherichia coli
Construction of a genetic toggle switch in Escherichia coli Farah and Tom.
Melbourne Uni What is iGEM? International Genetically Engineered Machine competition Started in 2003 within MIT.
Cling-E. coli : Bacteria on target Harvard iGEM 2007 Ellenor Brown Stephanie Lo Alex Pickett Sammy Sambu Kevin Shee Perry Tsai Shaunak Vankudre George.
Kaifeng Chen Institute for Theoretical Physics Synthetic Biology with Engineering Tools 1 Francis Chen.
Last Week Determined that our YFP reporter (used in the receiver) is a defective part Re-ordered a working YFP and began reconstruction using the new YFP.
Project Proposal for iGEM Project Specifications - Detect pH of a system Report pH of a system Genetically Engineered pH Buffering Machine Maintain.
IGEM 2008 Tutorial Modeling. What? Model A model in science is a physical, mathematical, or logical representation of a system of entities, phenomena,
Characterization of the Hrp Regulatory System Project 1 of the Imperial iGEM 2007 team.
Two dimensional pattern formation A synthetic multicellular system for programmed pattern formation (Nature 2005, 434: ) Jingyao Guo.
AND Gate Inputs Output Input A (Switch) Input B (Switch) Output Y (Lamp) 0 (Open) 0 (OFF) A B Lamp.
Quorum Sensing iGEM2007. Target (eg Nickel) luxI OHHL luxR.
BBa_J07008 BBa_J BBa_J07010 CELL Y Y Transmembrane protein Sensor antibodies scFv.
Establishing Baseline Performance Scores for the CAGEN Robust Gene Response Challenge Shaunak Sen Caltech CDS Dec 14, 2011.
Marimo Bacteria Chiba iGEM 2007 Chiba University, Japan.
Imperial. Starting off: Week 1 Week 1 Engineering/Biology Introduction Lectures Journal Club WikiBrainstorming 3 ideas.
GENETIC TOGGLE SWITCH IN E. COLI COLLINS LAB (2000) Allen Lin 1.
Brown iGEM international genetically engineered machines competition August Update 1/55.
IGEM 2005: Team BioWire and BioLoserz!!! LOL Orr Ashenberg, Patrick Bradley, Connie Cheng, Kang-Xing Jin, Danny Popper, Sasha Rush.
Encapsulation for Drug Delivery Encapsulation for Drug Delivery 31 st July iGEM Team 2009 Charles Dave Dineka James Kun Nuri Royah Tianyi.
Combinatorial Synthesis of Genetic Networks Calin C. Guet, Michael B. Elowitz, Weihong Hsing, Stanislas Leibler Amit Meshulam Bioinformatics Seminar Technion,
IGEM 2009 Tutorial Modelling. What? Model A model in science is a symplified physical, mathematical, or logical representation of a system of entities,
Modelling Our System Christin S. and Farah V..
2007 Brown iGEM Team 7 undergraduates 7 grad student advisors
Half Adder - Modeling Overview
Project Overview Landing Pads Divide-by two Circuit Modeling
Course outline 1 Introduction 2
Distributed computation: the new wave of synthetic biology devices
Enemies make you stronger, allies make you weaker. Frank Herbert
Noise in cellular circuitry
Volume 5, Issue 1, Pages e12 (July 2017)
Registry of Standard Biological Parts
Design of Adjacent Transcriptional Regions to Tune Gene Expression and Facilitate Circuit Construction  Fuqing Wu, Qi Zhang, Xiao Wang  Cell Systems 
HKUSTers Jean and Winnie
Self-differentiated Bacterial Assembly Line Peking 2007 IGEM
Pre and Post Questions Programming Tips and Challenges
Design of Adjacent Transcriptional Regions to Tune Gene Expression and Facilitate Circuit Construction  Fuqing Wu, Qi Zhang, Xiao Wang  Cell Systems 
Modelling A Cookbook to Success:
Modelling Our System Christin and Farah.
Central Dogma Theory and Kinetic Models
Presentation transcript:

iGEM 2007 ETH Zurich

ETH Zurich iGEM Team 2 ETH Zurich team

Learning Memory Recognition

Learning Memory Recognition

System design System input 1 System input 2 System output 1 System output 2 System output 3 System output 4 SensorsDecoderMemory

Memory Input 1Memory Input 2State variable 1State variable 2

Memory Memory Input 1Memory Input 2State variable 1State variable

Memory Memory Input 1Memory Input 2State variable 1State variable

Memory Memory Input 1Memory Input 2State variable 1State variable

Memory Memory Input 1Memory Input 2State variable 1State variable How can the switch keep its state with a new input?

Memory Memory Input 1Memory Input 2 Latch State variable 1State variable

Memory Memory Input 1Memory Input 2 Latch State variable 1State variable xx0keep state

Gated SR with latch

Mapping with AND gates

System design System input 1 System input 2 System output 1 System output 2 System output 3 System output 4 Sensors Decoder Memory Latch Sensor 1 Sensor 2 Sensor 3 aTc IPTG AHL TetR LuxR LacI CFP RFP YFP GFP cI cII

Biological Implementation of our system

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP P const System overview

System in the initial state (without any chemicals present)

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacITetR

Learning aTc

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR

Memorizing

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR AHL + CII

Testing for aTc

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR AHL + CII TetR CII

Testing for IPTG

cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const CII TetR AHL + CII TetR IPTG LacI

Equations 28

Parameters 29

Simulation of Equations 30

Sensitivity Questions – Parameter accuracy? – “Dangerous” parameters? – Target parameters for biological changes?

Sensitivity Analysis

Lab work P const lacI P const O LacI O CI GFP + LacI IPTG LacI

Summary Learning, Memory, Recognition Successful System Simulations Realistic Parameters – Robust Design Toggle switch design – dual promoter 11 Parts to registry 34

Applications Bio-Memory Bio-Chip Multiple Purpose Cell Lines – Patient Specific Medicine – Intelligent Biosensors 35

Acknowledgments 36

Thank you! Thank you for your attention! Questions?

Sensitivity analysis results Robustness System sensitive to: – Protein basal production levels (???) – Parameters elated to the cI, cII function cI, cII repressors dissociation constant cI, cII repressors Hill cooperativity cI, cII degradation rates Candidates for biological changes: – Basal production levels – cI, cII degradation rates

Sensors System input 1 System input 2 Sensors Memory input 1 Memory input 2 Sensor 1 Sensor 2

Memory Memory input 1 Memory input 2 Memory output 1 Memory output 2 ? State variable 1 State variable 2

Decoder State variable 1 State variable 2 System output 1 System output 2 System output 3 System output 4 Current input 1 in2 ANDsv2 in2ANDsv1 in1 ANDsv2 in1 ANDsv1

Introduction, Motivation 3 Phases Learning Memory Recognition 42

Lab work BD FACSAria™ Cell-Sorting System