INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.

Slides:



Advertisements
Similar presentations
Topic 8. Gamma Camera (II)
Advertisements

GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Lecture Notes Part 4 ET 483b Sequential Control and Data Acquisition
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
1 Chapter 5 Sensors and Detectors A detector is typically the first stage of a communication system. Noise in this stage may have significant effects on.
The Origins of X-Rays. The X-Ray Spectrum The X-Ray Spectrum (Changes in Voltage) The characteristic lines are a result of electrons ejecting orbital.
Fiber-Optic Communications
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
The UC Simulation of Picosecond Detectors Pico-Sec Timing Hardware Workshop November 18, 2005 Timothy Credo.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Workshop SLAC 7/27/04 M. Zolotorev Fluctuation Properties of Electromagnetic Field Max Zolotorev CBP AFRD LBNL.
10 B-based Multi-Grid Detectors as an alternative to 3 He In-beam test on the IN6 ToF spectrometer 10 B-based Multi-Grid Detectors as an alternative to.
ECAL electronics Guido Haefeli, Lausanne PEBS meeting 10.Jan
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Electromagnetic Compatibility of a Low Voltage Power Supply for the ATLAS Tile Calorimeter Front-End Electronics G. BLANCHOT CERN, CH-1211 Geneva.
1 Microstrip PSD detectors C. Fermon, V. Wintenberger, G. Francinet, F. Ott, Laboratoire Léon Brillouin CEA/CNRS Saclay.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
EDS Energy Dispersive Spectroscopy
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Updates on GEMs characterization with APV electronics K. Gnanvo, N. Liyanage, K. Saenboonruang.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
PSD 7 September 2005 Developments and Applications of Gas Based Neutron Detectors Introduction Neutron Detector Characteristics Gaseous Detectors currently.
Malte Hildebrandt, PSIMEG - Review Meeting / 1   e  Drift Chambers Charge Division Test Chamber Testsetup for Cosmics Chamber Construction.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Using delay lines on a test station for the Muon Chambers Design considerations (A. F. Barbosa, Jul/2003)
CS TC 22 CT Basics CT Principle Preprocessing. 2 CT Basics CT principle preprocessing CS TC 22 Blockdiagram image processor.
Electronic Noise Noise phenomena Device noise models
Catania 11 ICATPP october, 2009 Como 1/12 Catania Comparative measurements of the performances of four super bialkali large.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
Quality control for large volume production GEM detectors Christopher Armaingaud On behalf of the collaboration GEMs for CMS.
Photo-detection EDIT EDIT 2011Single photon counting measurements with an HPD – T. GysSlide 1 Single photon counting measurements with a hybrid photon.
Single tube detection efficiency BIS-MDT GARFIELD Simulation GARFIELD Simulation Anode wire voltage as a function of the distance from the wire Electric.
PSA: ADAPTIVE GRID SEARCH The Method Experimental Results Optimization aspects Roberto Venturelli (INFN Padova - IPSIA “Giorgi” Verona) SACLAY, 05-may-06.
Beam Profile Monitor for Spot-Scanning System Yoshimasa YUASA.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
25 juin 2010DPallin sLHC_Tile meeting1 Tilecal VFE developments at Clermont-Ferrand June 2010 Status G Bohner, J Lecoq, X Soumpholphakdy F Vazeille, D.
ESS Detector Group Seminar Edoardo Rossi 14th August 2015
 A) Pulse Height Spectroscopy  Identify the equipment such as detector, electronics modules and NIM.
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
FWD Meeting, Torino, June 16th, News from Cracow on the forward tracking J. Smyrski Institute of Physics UJ Tests of CARIOCA and LUMICAL preamplifiers.
1 straw tube signal simulation A. Rotondi PANDA meeting, Stockolm 15 June 2010.
Preamplifier R&D at University of Montreal for the drift chamber J.P. Martin, Paul Taras.
HEC I chip design Short summary (J.Bán).
FEE for TPC MPD__NICA JINR
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
Activities on straw tube simulation
A General Purpose Charge Readout Chip for TPC Applications
Calorimeter Mu2e Development electronics Front-end Review
Analog FE circuitry simulation
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
DCH preamplifier developments In Montreal
Detection of muons at 150 GeV/c with a CMS Preshower Prototype
Slice Test: Preliminary Data Analysis The Ohio State University
A Fast Binary Front - End using a Novel Current-Mode Technique
Instrumentation for Colliding Beam Physics 2017
Department of Physics and Astronomy,
BESIII EMC electronics
Status of the CARIOCA project
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Development of hybrid photomultiplier for Hyper-Kamiokande
8.5 Modulation of Signals basic idea and goals
8.2 Common Forms of Noise Johnson or thermal noise
Straw tubes for LoKI Davide Raspino IKON
Presentation transcript:

INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 SANS-2MHz Millennium Project Project. –Goal: fast real-time detector for small angle scattering. –Main specifications: > 2MHz at 10% dead time (actually: only 50 KHz). Resolution 128x128 on 1 m 2. Efficiency ~ 75 % at 5 Angstrom. Good gamma - neutron separation. 5 microseconds time resolution for thermal neutrons –Approach: 128 individual linear PSD. Charge division per PSD. People –Bruno Guerard (detector group) –Roland May (D22 responsible) –Alexandre Sicard (PhD. student) –Jean-Claude Buffet (mechanician) –Frederic Millier (electronician) –Patrick Van Esch (detector group)

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Principle of Detector. Linear PSD detectors. 5 prototypes made by Reuter stokes. –7.12 mm active diameter. –7.95 mm mechanical outer diameter. –1 meter long. –About 10 bar He-3 gas. Commercial 1 inch detector

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Resistive Charge Division Event current 0.5 pC Up to 500ns Resistive anode wire 5.6 KOhm Current noise i1 Current noise i2 Voltage noise v1 Voltage noise v2 Transimpedance preamplifier 1 Transimpedance preamplifier 2 Gaussian Shaper 1 Gaussian Shaper 2 Baseline correction 1 Baseline correction 2 Peak detection And ADC Johnson current noise

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Principle of Resistive Charge Division Charge Q collected at both ends divides in A and B when wire length is L, distance of impact from A is x, wire resistance is R and preamplifier impedance is Z. Extraction of position information: the fraction (A-B)/(A+B) codes the position in the interval (-1,1), reduced by the dynamic range. Need for very low impedance (virtual ground).

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Electronic Noise and Position Resolution White current spectral noise densities seen by both amplifiers at the input are correlated. The output R.M.S. voltage noise can be calculated from the input current noise spectral density. In the case of white noise, this simplifies to a factor related to the transimpedance function. These voltage noise values can be propagated in the position calculation, resulting in the position resolution due to electronic noise.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Analogue Signal Processing Resistive charge division. –In contrast with capacitive (single ended) detectors: Faster shaping gives better S/N. Limited by overall conductance of wire (Johnson noise). Limited by integration time. Gaussian shaping. –Best compromise between: Time domain pulse width. Frequency domain noise bandwidth. –Implementation as 4th order pure pole active filter, about 1MHz bandwidth. Unipolar pulse shaping: –Less dead time. –But shift in baseline ! –Baseline correction: Averages baseline over several microseconds (eliminating noise). Corrects input signal with that amount. Reduction with a factor less than 1/10 of the initial baseline shift. No visible added noise.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Impulse response.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Prototype Primary Charge HV bias: 100 V. Integration time: 10 microseconds. Using FET entry amplifier. Allows us to estimate absolute gain of detector.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Spectra 1100 V 1300 V 1400 V 1500 V

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Absolute Gain 8 mm Prototype 1 inch detector

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Spectrum

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Numerical application This results in a F.W.H.M. resolution of 5.5mm in the middle and 6.2mm on the borders.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Linearity of Position Calibration

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Spatial Resolution

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Count Rate Issues Estimated dead time: –770 nanoseconds no extra dead time due to detector effects Implication for count rates (10% dead time correction): –130 kHz per tube –SANS MHz

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Spatial resolution at high count rates Large beam (35 mm FWHM) at about 100 KHz With and without a Cd sheet in beam length Spatial ‘resolution’ obtained ~9mm FWHM over entire length of detector. Reasonable upper estimate of true spatial resolution

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Spectral behaviour at high count rate The upper part of the spectrum suffers a degradation at high counting rates. This does not impair significantly the detector performance.

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Efficiency Along Detector Scan along anode with narrow beam Very stable efficiency all over the detector Transition zone only about 4 mm !

INSTITUT MAX VON LAUE - PAUL LANGEVIN Patrick Van Esch S.D.N. TINX Septembre 2001 Conclusion Linear PSD based on the principle of resistive charge division offer great potential for building fast, large-scale neutron detectors. Resolution below 1cm at high count rates (>100kHz) can be obtained (6mm at low count rates). Very good linearity and uniformity. Electronics now exploits fully the potential of the detector. This opens up the possibility to have time resolution of the order of tens of microseconds.