Access Methods for Advanced Database Applications.

Slides:



Advertisements
Similar presentations
External Memory Hashing. Model of Computation Data stored on disk(s) Minimum transfer unit: a page = b bytes or B records (or block) N records -> N/B.
Advertisements

CS4432: Database Systems II Hash Indexing 1. Hash-Based Indexes Adaptation of main memory hash tables Support equality searches No range searches 2.
Hash-Based Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Hash-based Indexes CS 186, Spring 2006 Lecture 7 R &G Chapter 11 HASH, x. There is no definition for this word -- nobody knows what hash is. Ambrose Bierce,
1 Hash-Based Indexes Module 4, Lecture 3. 2 Introduction As for any index, 3 alternatives for data entries k* : – Data record with key value k – –Choice.
Hash-Based Indexes The slides for this text are organized into chapters. This lecture covers Chapter 10. Chapter 1: Introduction to Database Systems Chapter.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
CPSC 404, Laks V.S. Lakshmanan1 Hash-Based Indexes Chapter 11 Ramakrishnan & Gehrke (Sections )
Chapter 11 (3 rd Edition) Hash-Based Indexes Xuemin COMP9315: Database Systems Implementation.
6. Files of (horizontal) Records
Hash Indexes: Chap. 11 CS634 Lecture 6, Feb
Index tuning Hash Index. overview Introduction Hash-based indexes are best for equality selections. –Can efficiently support index nested joins –Cannot.
ICS 421 Spring 2010 Indexing (2) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/23/20101Lipyeow Lim.
B-trees - Hashing. 11.2Database System Concepts Review: B-trees and B+-trees Multilevel, disk-aware, balanced index methods primary or secondary dense.
1 Hash-Based Indexes Yanlei Diao UMass Amherst Feb 22, 2006 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
B+-tree and Hashing.
B+-tree and Hash Indexes
1 Hash-Based Indexes Chapter Introduction  Hash-based indexes are best for equality selections. Cannot support range searches.  Static and dynamic.
FALL 2004CENG 3511 Hashing Reference: Chapters: 11,12.
Spatial Indexing I Point Access Methods. Spatial Indexing Point Access Methods (PAMs) vs Spatial Access Methods (SAMs) PAM: index only point data Hierarchical.
Spatial Indexing I Point Access Methods.
1 Hash-Based Indexes Chapter Introduction : Hash-based Indexes  Best for equality selections.  Cannot support range searches.  Static and dynamic.
Spatial Indexing I Point Access Methods. Spatial Indexing Point Access Methods (PAMs) vs Spatial Access Methods (SAMs) PAM: index only point data Hierarchical.
Spatial Indexing I Point Access Methods. Spatial Indexing Point Access Methods (PAMs) vs Spatial Access Methods (SAMs) PAM: index only point data Hierarchical.
Spatial Data Management Chapter 28. Types of Spatial Data Point Data –Points in a multidimensional space E.g., Raster data such as satellite imagery,
©Silberschatz, Korth and Sudarshan12.1Database System Concepts Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree.
Hashing and Hash-Based Index. Selection Queries Yes! Hashing  static hashing  dynamic hashing B+-tree is perfect, but.... to answer a selection query.
1 Database Systems ( 資料庫系統 ) November 8, 2004 Lecture #9 By Hao-hua Chu ( 朱浩華 )
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree- and Hash-Structured Indexes Selected Sections of Chapters 10 & 11.
Database Management 7. course. Reminder Disk and RAM RAID Levels Disk space management Buffering Heap files Page formats Record formats.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11 Modified by Donghui Zhang Jan 30, 2006.
Introduction to Database, Fall 2004/Melikyan1 Hash-Based Indexes Chapter 10.
1.1 CS220 Database Systems Indexing: Hashing Slides courtesy G. Kollios Boston University via UC Berkeley.
Static Hashing (using overflow for collision managment e.g., h(key) mod M h key Primary bucket pages 1 0 M-1 Overflow pages(as separate link list) Overflow.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Indexed Sequential Access Method.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 10.
Spatial Database 2/5/2011 Reference – Ramakrishna Gerhke and Silbershatz.
B-Trees, Part 2 Hash-Based Indexes R&G Chapter 10 Lecture 10.
1 Database Systems ( 資料庫系統 ) November 28, 2005 Lecture #9.
Chapter 5 Record Storage and Primary File Organizations
Hash-Based Indexes. Introduction uAs for any index, 3 alternatives for data entries k*: w Data record with key value k w w Choice orthogonal to the indexing.
Database Applications (15-415) DBMS Internals- Part IV Lecture 15, March 13, 2016 Mohammad Hammoud.
Spatial Data Management
Spatial Indexing I Point Access Methods.
Hash-Based Indexes Chapter 11
Hashing CENG 351.
Database Management Systems (CS 564)
The Quad tree The index is represented as a quaternary tree
Hashing Chapter 11.
Introduction to Database Systems
External Memory Hashing
Tree- and Hash-Structured Indexes
CS222: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hash-Based Indexes R&G Chapter 10 Lecture 18
Hash-Based Indexes Chapter 10
B-Trees, Part 2 Hash-Based Indexes
CS222P: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hashing.
Hash-Based Indexes Chapter 11
Index tuning Hash Index.
Database Systems (資料庫系統)
LINEAR HASHING E0 261 Jayant Haritsa Computer Science and Automation
Database Design and Programming
Index tuning Hash Index.
Hash-Based Indexes Chapter 11
Chapter 11 Instructor: Xin Zhang
Tree- and Hash-Structured Indexes
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #07 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Presentation transcript:

Access Methods for Advanced Database Applications

Applications Geographic Information Systems / Spatial DB Text databases XML databases Data warehouse High-dimensional databases (image, scientific) Time series Sequence databases (genomic databases) Main memory database systems

Why New Indexes? A most effective mechanism to prune the search Order of magnitude of difference between I/O and CPU cost Increasing data size Increasing complexity of data and search

Memory System CPU Registers L1 Cache CPU Die L2 Cache Main Memory Harddisk

Memory Hierarchy

Improvement in Performance CPU (60%/yr) DRAM (10%/yr)

Design Principles Simple in design Efficient in disk access/CPU time Not necessary contradicting the simplicity! Ease of integration into existing DBMS Built on top of the mature index (eg. B + -tree & R-tree)? Reuse all the well tested concurrency control etc.

Spatial Databases Spatial Objects: –Points: spatial location: eg. feature vectors –Lines: set of points: eg. roads, coastal line –Polygons: set of points: eg. Buildings, lakes Data Types: –Point: a spatial data object with no extension no size or volume –Region:a spatial object with a location and a boundary that defines the extension

Spatial Queries Range queries: “Find all cities within 50 km of Madras?” Nearest neighbor queries: “Find the 5 cities that are nearest to Madras?” “Find the 10 images most similar to this image?” Spatial join queries: “Find pairs of cities within 200 km of each other?’

More Examples Range Query: “Find me data points that satisfy the conditions x1 <A1 < y1, x2 <A2 <y2…?” Spatial Query: “Find me buildings that are adjacent to the Railway Stations?” Nearest Neighbour Query: “Find me the nearest fire station to Clementi Ave. 3?”

Applications Geographical Information Systems (GIS): dealing extensively with spatial data. Eg. Map system, resource management systems Computer-aided design and manufacturing (CAD/CAM): dealing mainly with surface data. Eg. design systems. Multimedia databases: storing and manipulating characteristics of MM objects.

Representation of Spatial Objects Testing on real objects is expensive Minimum Bounding Box/Rectangle How to test if 2-d rectangles intersect?

Approaches to Multi-Dimensional Indexing Data Partitioning –R-tree, R*-tree, X-tree, Skd-tree, SS-tree, TV- tree, M-tree Space Partitioning –Buddy-tree, R+-tree, Grid File, KDB-tree Mapping R-trees

A B AB R-trees R-trees

Range Query Insert –Node splitting –Optimization Coverage Overlap Delete Variants: R+-tree R*-tree, buddy-tree

Space Filling Curves Assumption: att. values can be represented with some fixed # of bits Space domain on each dimension: 2 k values Linearize the doman Each point can be represented by a single dimensional value

Z-ordering

Z-ordering The z-value is obtained by interleaving the bits. Eg. X=01, Y=11 z-value = 0111 = 7 Clustering effect on X-Y and z-values can be indexed using B + -trees Range queries: problematic?

Hilbert Curve

Grid Files Based on extendible hashing Design principle: any point query can be answered in at most 2 disk accesses. Two structures: k-dimensional array and k 1- dimensional array

Extendible Hashing Situation: Hash Bucket (primary page) becomes full. Why not re-organize file by doubling # of buckets? –Reading and writing all pages is expensive! –Idea: Use directory of pointers to buckets, double # of buckets by doubling the directory, splitting just the bucket that overflowed! –Directory much smaller than file, so doubling it is much cheaper. Only one page of data entries is split. No overflow page! –Trick lies in how hash function is adjusted!

Example Directory is array of size 4. To find bucket for r, take last `global depth’ # bits of h(r); we denote r by h(r). –If h(r) = 5 = binary 101, it is in bucket pointed to by 01. v Insert : If bucket is full, split it ( allocate new page, re-distribute ). v If necessary, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing global depth with local depth for the split bucket.) 13* LOCAL DEPTH GLOBAL DEPTH DIRECTORY Bucket A Bucket B Bucket C Bucket D DATA PAGES 10* 1*21* 4*12*32* 16* 15*7*19* 5*

Insert h(r)=20 (Causes Doubling) 20* LOCAL DEPTH 2 2 DIRECTORY GLOBAL DEPTH Bucket A Bucket B Bucket C Bucket D Bucket A2 (`split image' of Bucket A) 1* 5*21*13* 32* 16* 10* 15*7*19* 4*12* 19* DIRECTORY Bucket A Bucket B Bucket C Bucket D Bucket A2 (`split image' of Bucket A) 32* 1*5*21*13* 16* 10* 15* 7* 4* 20* 12* LOCAL DEPTH GLOBAL DEPTH

Points to Note 20 = binary Last 2 bits (00) tell us r belongs in A or A2. Last 3 bits needed to tell which. –Global depth of directory: Max # of bits needed to tell which bucket an entry belongs to. –Local depth of a bucket: # of bits used to determine if an entry belongs to this bucket. When does bucket split cause directory doubling? –Before insert, local depth of bucket = global depth. Insert causes local depth to become > global depth; directory is doubled by copying it over and `fixing’ pointer to split image page. (Use of least significant bits enables efficient doubling via copying of directory!)

Directory Doubling Why use least significant bits in directory? ó Allows for doubling via copying! vs * 6 = * 6 = Least SignificantMost Significant

Comments on Extendible Hashing If directory fits in memory, equality search answered with one disk access; else two. –100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data entries) and 25,000 directory elements; chances are high that directory will fit in memory. –Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large. –Multiple entries with same hash value cause problems! Delete: If removal of data entry makes bucket empty, can be merged with `split image’. If each directory element points to same bucket as its split image, can halve directory.

Summary on Extendible Hashing Hash-based indexes: best for equality searches, cannot support range searches. Static Hashing can lead to long overflow chains. Extendible Hashing avoids overflow pages by splitting a full bucket when a new data entry is to be added to it. (Duplicates may require overflow pages.) –Directory to keep track of buckets, doubles periodically. –Can get large with skewed data; additional I/O if this does not fit in main memory.

Grid Files

Scales, Directory, Bucket Data structures: –Linear scales –directory: an array whose elements are one-to- one correspondence with the grid cells; each entry points to a data bucket –data buckets

Splitting and Merging

Grid Files... Repetitive splitting by halving Merging based on buddy system Regions are represented as (cx, cy, dx, dy) –point queries: cx-dx <= qx <= cx+dx, –& cy-dy <= qy <= cy+dy

Grid Files... E D C F B A qx cx dx C D E A B F cx cy qy cy dy C D E A B F