ISIS Accelerator Division

Slides:



Advertisements
Similar presentations
WG 4: High Power Proton Accelerators S. Holmes, J. Thomason PASI Collaboration Meeting April 3-5, 2013.
Advertisements

Machine Physics at ISIS Proton Meeting 24 th March 11 Dean Adams (On behalf of ISIS Accelerator Groups)
ISS meeting, (1) R. Garoby (for the SPL study group) SPL-based Proton Driver for Facilities SPL-based Proton Driver for Facilities at CERN:
Current Status of Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda,
Proton / Muon Bunch Numbers, Repetition Rate, RF and Kicker Systems and Inductive Wall Fields for the Rings of a Neutrino Factory G H Rees, RAL.
Ion Accelerator Complex for MEIC January 28, 2010.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
 An h=4 (30 MHz) RF system will be used for electron operation. For protons, this would correspond to h=56, and the 1 kV maximum gap voltage would only.
NOvA meeting PIP Update W. Pellico. PIP Goals and Scope (Provided in 2011 – Directorate S. H. / DOE Talk ) Goals: Specific to the issues surrounding the.
Options for a 50Hz, 10 MW, Short Pulse Spallation Neutron Source G H Rees, ASTeC, CCLRC, RAL, UK.
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
Space Charge and High Intensity Studies on ISIS C M Warsop Reporting the work of D J Adams, B Jones, B G Pine, C M Warsop, R E Williamson ISIS Synchrotron.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
The LHC: an Accelerated Overview Jonathan Walsh May 2, 2006.
CAT-KEK-Sokendai School on Spallation Neutron Sources 1 Rapid Cycling Synchrotron (I) CAT-KEK-Sokendai School on Spallation Neutron Sources K. Endo (KEK)
ISIS Upgrade Options ISIS Accelerator Division John Thomason.
LINAC4 STATUS Alessandra M. Lombardi for the LINAC4 team 1.Motivation and goals 2.Status of Linac4 2 years after official start of the project ( )
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Proton Driver Status ISIS Accelerator Division John Thomason.
Brookhaven Science Associates U.S. Department of Energy AGS Upgrade and Super Neutrino Beam DOE Annual HEP Program Review April 27-28, 2005 Derek I. Lowenstein.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda, H. Sako, H. Suzuki,
Proton Driver at Fermilab Keith Gollwitzer Accelerator Division Fermilab IDS-NF 7 th Plenary Meeting Oct 17-19,2011.
Related poster [1] TPAG022: Slow Wave Electrode Structures for the ESS 2.5 MeV Chopper – Michael A. Clarke-Gayther Status Funding bids have been prepared.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
F Project X Overview Dave McGinnis October 12, 2007.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Advanced Accelerator Design/Development Proton Accelerator Research and Development at RAL Shinji Machida ASTeC/STFC/RAL 24 March 2011.
MW Upgrades for the ISIS Facility John Thomason. OptionCommentsBeam Power (MW) Neutron Yield 1(a)Add 180 MeV LinacTechnical Issues~ (b)Add 800.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
June 23, 2005R. Garoby Introduction SPL+PDAC example Elements of comparison Linacs / Synchrotrons LINAC-BASED PROTON DRIVER.
ISIS operational update David Findlay Accelerator Division ISIS Department Rutherford Appleton Laboratory / STFC DL-RAL Joint Accelerator Workshop, RAL.
Challenges of Dual Harmonic RF Systems ISIS Synchrotron Group John Thomason.
 Advanced Accelerator Simulation Panagiotis Spentzouris Fermilab Computing Division (member of the SciDAC AST project)
Proton Driver Main Linac Parameter Optimization G. W. Foster Proton Driver General Meeting Jan 19, 2005.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
Proton Source & Site Layout Keith Gollwitzer Accelerator Division Fermi National Accelerator Laboratory Muon Accelerator Program Review Fermilab, August.
WG2 (Proton FFAG) Summary G.H. Rees. Proton Driver Working Group  Participants: M. Yashimoto, S. Ohnuma, C.R. Prior, G.H. Rees, A.G. Ruggiero  Topics:
ISIS Upgrade Modelling Dean Adams On behalf of STFC/ISIS C Warsop, B Jones, B Pine, R Williamson, H Smith, M Hughes, A McFarland, A Seville, I Gardner,
J-PARC Accelerator and Beam Simulations Sep. 7th, SAD2006 Masahito Tomizawa J-PARC Main Ring G., KEK Outline of J-PARC Accelerator Characteristics of High.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
THE DESIGN OF THE AGS-BASED PROTON DRIVER FOR NEUTRINO FACTORY W.T. WENG, BNL FFAG WORKSHOP JULY 7-11, 2003 KEK, JAPAN.
Proton Driver / Project X Keith Gollwitzer Fermilab August 30, 2012.
3 GeV, 1.2 MW, RCS Booster and 10 GeV, 4.0 MW, NFFAG Proton Driver G H Rees, ASTeC, RAL.
F A Fermilab Roadmap Dave McGinnis May 28, f Fermilab Roadmap - McGinnis Timelines  Divide the road map into three parallel paths  ILC - Energy.
Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade Chandra Bhat Fermi National Accelerator Laboratory DPF2015, ANN ARBOR,
Proton Driver Design Keith Gollwitzer Fermilab February 19, 2014.
Robert R. Wilson Prize Talk John Peoples April APS Meeting: February 14,
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
Overview of Project X ICD and RD&D Plans David Neuffer material from Paul Derwent & Sergei Nagaitsev (AAC Meeting, February 3, 2009)
Proton Driver Keith Gollwitzer Accelerator Division Fermilab MAP Collaboration Meeting June 20, 2013.
ADSR Inst.July 2009 From PAMELA to ADSR, T.Yokoi From PAMELA to ADSR Takeichiro Yokoi (JAI)
The ISIS Facility John Thomason Synchrotron Group Leader ISIS Department Rutherford Appleton Laboratory / STFC (With thanks to David Findlay) Fermilab,
U.S. Plans for High Power Proton Drivers Steve Holmes Fermilab Workshop on Physics with a Multi-MW Proton Source CERN May 25, 2004.
Neutrino Factory by Zunbeltz, Davide, Margarita, Wolfgang IDS proposal.
Presenter : Yang Wu McMaster University Work conducted at IHEP.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
PSI, Zurich February 29 – March Session classification : Accelerator Concepts Tuesday, March 1, 2016 Introduction Vyacheslav Yakovlev Fermilab,
UK Neutrino Factory Conceptual Design
Proton Driver Scenarios at RAL and CERN
ISIS Accelerator Division
Challenges of Dual Harmonic RF Systems
Alternative/complementary Possibilities
Acknowledgments: LIU-PT members and deputies, H. Bartosik
FFAG Accelerator Proton Driver for Neutrino Factory
Progress towards Pulsed Multi-MW CERN Proton Drivers
SLHC-PP kick-off meeting, CERN 9 April 2008
CLIC Feasibility Demonstration at CTF3
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

ISIS Accelerator Division Upgrades to the ISIS Facility John Thomason ISIS Accelerator Division

ISIS Accelerators H ion source (17 kV) 665 kV H RFQ 70 MeV H linac 800 MeV proton synchrotron Extracted proton beam lines The accelerator produces a pulsed beam of 800 MeV (84% speed of light) protons at 50 Hz, average beam current is 230 A (2.9× 1013 ppp) therefore 184 kW on target (148 kW to TS-1 at 40 pps, 36 kW to TS-2 at 10 pps).

ISIS Upgrades Present operations for two target stations Operational Intensities: 220 – 230 μA (185 kW) Experimental Intensities of 31013 ppp (equiv. 240 μA) DHRF operating well: High Intensity & Low Loss Now looking at overall high intensity optimisation Study ISIS upgrade scenarios 0) Linac and TS1 refurbishment 1) Linac upgrade leading to ~0.5 MW operations on TS1 2) ~3.3 GeV booster synchrotron: MW Target 3) 800 MeV direct injections to booster synchrotron: 2 – 5 MW Target 4) Upgrade 3) + long pulse mode option

ISIS MW Upgrade Scenarios 1) Replace ISIS linac with a new ≈ 180 MeV linac (≈ 0.5MW) 2) Based on a ≈ 3.3 GeV RCS fed by bucket-to-bucket transfer from ISIS 800 MeV synchrotron (1MW, perhaps more) 3) RCS design also accommodates multi-turn charge exchange injection to facilitate a further upgrade path where the RCS is fed directly from an 800 MeV linac (2 – 5 MW)

Power / Benefit / Cost Neutrons £ + Risk Power Upgraded TS1 TS2 Existing TS1 Power

ISIS Upgrades, Developments and R&D Work We have on-going research and studies to develop and fully exploit the machine map out the best development routes define principle upgrades undertake basic R&D into physics of high intensity beams Main focus presently ~180 MeV Injector Upgrade summarised in the following pages holistic optimisation including targets, neutronics, … “at the user” Next steps Exploring the possibilities for optimistic & less optimistic funding scenarios Mapping out the best options for a 1-2 MW short pulse neutron source Development and research on present machine

ISIS Injection Upgrade New 180 MeV Linac ISIS Injection Upgrade 70 MeV Linac A New 180 MeV Injector Update old linac Increase beam power ~0.5 MW Advantages Reduces Space Charge (factor 2.6) Chopped, Optimised Injection & Trapping Challenges Injection straight Activation (180 MeV) Space charge, beam stability, .... MICE 800 MeV Synchrotron TS1 TS2

ISIS Injection Upgrade Ring Physics Study Snapshots of the work: challenges of getting 0.5 MW in the ISIS Ring Injection Longitudinal Dynamics Injection Straight Modelling Injection Straight Analytical Work Simulation Results Test Distribution Evolution of bunch Foil temperatures Injected distributions in (x,x’),(y,y’),(,dE) RF Bucket Variation of key parameters Transverse & Full Cycle 3D Dynamics Other Essentials: Activation, Diagnostics Predicted Space Charge Limit Single particle tune shift distributions at 0.5 MW Activation vs Energy Activation Measurements Coherent Tune Shift and Resonance Electron Cloud Monitor Strip-line Monitor/Kicker Accelerated distributions in (x,x’),(y,y’),(,dE)

Possible ≈ 3.3 GeV RCS Rings

Bucket-to-Bucket Transfer

5SP RCS Ring Energy 0.8 – 3.2 GeV Rep Rate 50 Hz C, R/R0 367.6 m, 9/4 Gamma-T 7.2 h 9 frf sweep 6.1-7.1 MHz Peak Vrf ≈ 750 kV Peak Ksc ≈ 0.1 εl per bunch ≈ 1.5 eV s B[t] sinusoidal

Accelerating Structures DTL/SC Elliptical Cavities Frequency Grahame Rees, Ciprian Plostinar ( ) 800 MeV, Hˉ Linac Design Parameters Ion Species H- Output Energy 800 MeV Accelerating Structures DTL/SC Elliptical Cavities Frequency 324/648 MHz Beam Current 43 mA Repetition Rate 30 Hz (Upgradeable to 50 ) Pulse Length 0.75 ms Duty Cycle 2.25 % Average Beam Power 0.5 MW Total Linac Length 243 m

Design Options

Capacity upgrade scenarios “Traditional” 3-stage MW upgrade scenario could be extended so 3.2 GeV RCS includes multiple extraction straights (or switchyard in EPB), with or without 800 MeV linac. Stacked rings (as at CERN PSB) could be implemented as part of AC magnet replacement programme. Would require increased linac performance, but otherwise it is an engineering challenge to minimise off time during installation rather than an accelerator physics challenge, and would be a very predictable upgrade.

One synchrotron with several extraction straights? Target station #1 Target station #2 “Efficient” footprint Maximises total number of neutron beam lines Flexible Easy extraction of proton beams of different energies, intensities and repetition rates to suit wide range of neutron experiments Linac Synchrotron Would need to drive trim quads. and steerers differently for different energies and intensities, but trim quads. and steerers are pulsed anyway, and so changing trim magnet current profiles from acceleration cycle to acceleration cycle should raise no fundamental complications. Target station #4 Target station #3

Ring High Intensity Beam Studies on ISIS Some of our R&D Studies Half-integer intensity limit in proton rings Using the ISIS ring to study halo formation New simulation code: Set 3Di Model losses, benchmark on ISIS Simulation Simulation Measurement (Y,Y) Y profile Y profile Higher order loss effects and images Investigating complex loss mechanisms Head-tail instability Key for high intensity proton rings Image driven resonance Vertical dipole motion along bunch on successive turns Vertical difference signal (along bunch, many turns) Loss vs Q measurement Samples along bunch Turn 

Necessary Hardware R&D High power front end (FETS) RF Systems Stripping Foils Diagnostics Targets Kickers etc. To realise ISIS upgrades and generic high power proton driver development, common hardware R&D will be necessary in key areas: In the neutron factory context SNS and J-PARC are currently dealing with many of these issues during facility commissioning and we have a watching brief for all of these Active programmes in some specific areas