Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.

Slides:



Advertisements
Similar presentations
Coefficient of Determination- R²
Advertisements

Topic 12: Multiple Linear Regression
Chapter 12 Simple Linear Regression
Forecasting Using the Simple Linear Regression Model and Correlation
Analisis Varians Dwi Arah Pertemuan 22 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Korelasi Linear Pertemuan 19
Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regression Analysis Simple Regression. y = mx + b y = a + bx.
Regression Analysis Module 3. Regression Regression is the attempt to explain the variation in a dependent variable using the variation in independent.
Regression Analysis Once a linear relationship is defined, the independent variable can be used to forecast the dependent variable. Y ^ = bo + bX bo is.
Linear Regression - Topics
Simple Linear Regression and Correlation
Chapter 12 Simple Linear Regression
Regresi dan Analisis Varians Pertemuan 21 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter 10 Simple Regression.
Korelasi Ganda Dan Penambahan Peubah Pertemuan 13 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 11 th Edition.
Interaksi Dalam Regresi (Lanjutan) Pertemuan 25 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Rancangan Faktorial Pertemuan 23 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter 13 Introduction to Linear Regression and Correlation Analysis
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter Topics Types of Regression Models
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Pertemua 19 Regresi Linier
Simple Linear Regression. Chapter Topics Types of Regression Models Determining the Simple Linear Regression Equation Measures of Variation Assumptions.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
Chapter 14 Introduction to Linear Regression and Correlation Analysis
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 10 th Edition.
Chapter 7 Forecasting with Simple Regression
Introduction to Regression Analysis, Chapter 13,
Introduction to Linear Regression and Correlation Analysis
Purpose of Regression Analysis Regression analysis is used primarily to model causality and provide prediction –Predicts the value of a dependent (response)
OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.
© 2003 Prentice-Hall, Inc.Chap 13-1 Basic Business Statistics (9 th Edition) Chapter 13 Simple Linear Regression.
Chap 12-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 12 Introduction to Linear.
EQT 373 Chapter 3 Simple Linear Regression. EQT 373 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Go to Table of Content Single Variable Regression Farrokh Alemi, Ph.D. Kashif Haqqi M.D.
Chapter 5: Regression Analysis Part 1: Simple Linear Regression.
Regression Analysis Relationship with one independent variable.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Lecture 10: Correlation and Regression Model.
Multiple Regression. Simple Regression in detail Y i = β o + β 1 x i + ε i Where Y => Dependent variable X => Independent variable β o => Model parameter.
Statistics for Managers Using Microsoft® Excel 5th Edition
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Lecture 10 Introduction to Linear Regression and Correlation Analysis.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 19 Measure of Variation in the Simple Linear Regression Model (Data)Data.
Conceptual Foundations © 2008 Pearson Education Australia Lecture slides for this course are based on teaching materials provided/referred by: (1) Statistics.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
Chapter 13 Simple Linear Regression
Simple Linear Regression & Correlation
Chapter 20 Linear and Multiple Regression
Inference for Least Squares Lines
Statistics for Managers using Microsoft Excel 3rd Edition
Simple Linear Regression
Relationship with one independent variable
Chapter 13 Simple Linear Regression
Prepared by Lee Revere and John Large
PENGOLAHAN DAN PENYAJIAN
Relationship with one independent variable
Pemeriksaan Sisa dan Data Berpengaruh Pertemuan 17
Korelasi Parsial dan Pengontrolan Parsial Pertemuan 14
Chapter 13 Additional Topics in Regression Analysis
Presentation transcript:

Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008

Bina Nusantara Uji Kelinieran dan Keberartian Regresi Anova pada regresi Sederhana Selang Kepercayaan Parameter Regresi Uji Independen Antar Peubah

Bina Nusantara Measures of Variation: The Sum of Squares SST = SSR + SSE Total Sample Variability = Explained Variability + Unexplained Variability

Bina Nusantara Measures of Variation: The Sum of Squares SST = Total Sum of Squares – Measures the variation of the Y i values around their mean, SSR = Regression Sum of Squares – Explained variation attributable to the relationship between X and Y SSE = Error Sum of Squares – Variation attributable to factors other than the relationship between X and Y (continued)

Bina Nusantara Measures of Variation: The Sum of Squares (continued) XiXi Y X Y SST =  (Y i - Y) 2 SSE =  (Y i - Y i ) 2  SSR =  (Y i - Y) 2   _ _ _

Bina Nusantara Venn Diagrams and Explanatory Power of Regression Sales Sizes Variations in Sales explained by Sizes or variations in Sizes used in explaining variation in Sales Variations in Sales explained by the error term or unexplained by Sizes Variations in store Sizes not used in explaining variation in Sales

Bina Nusantara The ANOVA Table in Excel ANOVA dfSSMSF Significance F RegressionkSSR MSR =SSR/k MSR/MSE P-value of the F Test Residualsn-k-1SSE MSE =SSE/(n-k-1) Totaln-1SST

Bina Nusantara Measures of Variation The Sum of Squares: Example Excel Output for Produce Stores SSR SSE Regression (explained) df Degrees of freedom Error (residual) df Total df SST

Bina Nusantara The Coefficient of Determination Measures the proportion of variation in Y that is explained by the independent variable X in the regression model

Bina Nusantara Venn Diagrams and Explanatory Power of Regression Sales Sizes

Bina Nusantara Coefficients of Determination (r 2 ) and Correlation (r) r 2 = 1, r 2 =.81, r 2 = 0, Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ Y Y i =b 0 +b 1 X i X ^ r = +1 r = -1 r = +0.9 r = 0

Bina Nusantara Standard Error of Estimate Measures the standard deviation (variation) of the Y values around the regression equation

Bina Nusantara Measures of Variation: Produce Store Example Excel Output for Produce Stores r 2 =.94 94% of the variation in annual sales can be explained by the variability in the size of the store as measured by square footage. S yx n

Bina Nusantara Linear Regression Assumptions Normality – Y values are normally distributed for each X – Probability distribution of error is normal Homoscedasticity (Constant Variance) Independence of Errors

Bina Nusantara Consequences of Violation of the Assumptions Violation of the Assumptions – Non-normality (error not normally distributed) – Heteroscedasticity (variance not constant) Usually happens in cross-sectional data – Autocorrelation (errors are not independent) Usually happens in time-series data Consequences of Any Violation of the Assumptions – Predictions and estimations obtained from the sample regression line will not be accurate – Hypothesis testing results will not be reliable It is Important to Verify the Assumptions

Bina Nusantara Y values are normally distributed around the regression line. For each X value, the “spread” or variance around the regression line is the same. Variation of Errors Around the Regression Line X1X1 X2X2 X Y f(e) Sample Regression Line

Bina Nusantara Residual Analysis Purposes – Examine linearity – Evaluate violations of assumptions Graphical Analysis of Residuals – Plot residuals vs. X and time