On Cavity Tilt + Gradient Change (Beam Dynamics) 2010.09.08 K. Kubo K. Kubo.

Slides:



Advertisements
Similar presentations
Emittance dilution due to misalignment of quads and cavities of ILC main linac revised K.Kubo For beam energy 250 GeV,
Advertisements

Emittance dilution due to misalignment of quads and cavities of ILC main linac K.Kubo For beam energy 250 GeV, TESLA-type optics for 24MV/m.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Issues in ILC Main Linac and Bunch Compressor from Beam dynamics N. Solyak, A. Latina, K.Kubo.
Ion instability at SuperKEKB H. Fukuma (KEK) and L. F. Wang (SLAC) ECLOUD07, 12th Apr. 2007, Daegu, Korea 1. Introduction 2. Ion trapping 3. Fast ion instability.
Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop Kiyoshi KUBO References: TESLA TDR ILC-TRC-2.
January 2004 GLC/NLC – X-Band Linear Collider Peter Tenenbaum Beam Dynamics of the IR: The Solenoid, the Crossing Angle, The Crab Cavity, and All That.
ATF2 FB/FF layout Javier Resta Lopez (JAI, Oxford University) for the FONT project group FONT meeting January 11, 2007.
Cryomodule requirements Hitoshi Hayano, KEK for CFS consideration Asian Single Tunnel Design June 1-2,2010.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Alignment and Beam Stability
Ground Motion + Vibration Transfer Function for Final QD0/SD0 Cryomodule System at ILC Glen White, SLAC ALCPG11, Eugene March 21, 2011.
ATF2 Javier Resta Lopez (JAI, Oxford University) for the FONT project group 5th ATF2 project meeting, KEK December 19-21, 2007.
CLIC RTML collimation systems and beam stabilisation R. Apsimon CERN, TE-ABT-BTP ECFA LC2013 at DESY, Hamburg 27 th -31 st May 2013.
For Draft List of Standard Errors Beam Dynamics, Simulations Group (Summarized by Kiyoshi Kubo)
ILC Feedback System Studies Nikolay Solyak Fermilab 1IWLC2010, Geneva, Oct.18-22, 2010 N.Solyak.
LCLS-II Magnet Error Sensitivities. Sensitivities of dipole magnets, from injector output (95 MeV) to SXR undulator input (4 GeV), where each plotted.
Alignment (Survey) Tolerances in Main Linac from Beam Dynamics Simulations Kiyoshi Kubo.
Simulations Group Summary K. Kubo, D. Schulte, N. Solyak for the beam dynamics working group.
John Carwardine 5 th June 2012 Developing a program for 9mA studies shifts in Sept 2012.
John Adams Institute Frank Tecker Linear Colliders Frank Tecker – CERN Linear Colliders Lecture 3 Subsystems II Main Linac (cont.) Transverse Wakefields.
16 August 2005PT for US BC Task Force1 Two Stage Bunch Compressor Proposal Snowmass WG1 “It’s the latest wave That you’ve been craving for The old ideal.
July 19-22, 2006, Vancouver KIRTI RANJAN1 ILC Curved Linac Simulation Kirti Ranjan, Francois Ostiguy, Nikolay Solyak Fermilab + Peter Tenenbaum (PT) SLAC.
Simulations (LET beam dynamics ) Group report Kiyoshi Kubo.
Multibunch beam stability in damping ring (Proposal of multibunch operation week in October) K. Kubo.
Beam stability in damping ring - for stable extracted beam for ATF K. Kubo.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Beam Dynamics WG K. Kubo, N. Solyak, D. Schulte. Presentations –N. Solyak Coupler kick simulations update –N. Solyak CLIC BPM –A. Latina: Update on the.
J. Pfingstner Imperfections tolerances for on-line DFS Improved imperfection tolerances for an on-line dispersion free steering algorithm Jürgen Pfingstner.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
Design of ATF2 feedback/feed-forward systems Javier Resta Lopez (JAI, Oxford University) for the FONT project group LC-ABD meeting Birmingham, 17-18th.
1 DFS Studies on the Main Linac with Rnd-walk-like motion (preliminary) Accelerator Physics Meeting 02 october 2007 Freddy Poirier.
1 DFS Studies on the Main Linac with Rnd-walk-like motion LET Beam Dynamics Workshop 12 th December 2007 Freddy Poirier.
Main Linac Tolerances What do they mean? ILC-GDE meeting Beijing Kiyoshi Kubo 1.Introduction, review of old studies 2.Assumed “static” errors.
Emittance preservation in the main linacs of ILC and CLIC Andrea Latina (CERN) Kiyoshi Kubo (KEK) LCWS University of Texas at Arlington - Oct
Beam Dynamics IR Stability Issues Glen White / SLAC September IRENG07 Vibration tolerances for final doublet cryomodules Settlement of detector.
@ Fermilab ILC bunch-compressor and linac rf requirements Sergei Nagaitsev Fermilab Feb. 9, 2006.
Simulations - Beam dynamics in low emittance transport (LET: From the exit of Damping Ring) K. Kubo
Summary of Tuning, Corrections, and Commissioning ( Short summary of ATF2 meeting at SLAC in March 2007 ) and Hardware Issues for beam Tuning Toshiyuki.
John Adams Institute Frank Tecker Linear Colliders Frank Tecker – CERN Linear Colliders Lecture 3 Subsystems II Main Linac (cont.) RF system and technology.
DRAFT: What have been done and what to do in ILC-LET beam dynamics Beam dynamics/Simulations Group Beijing.
IoP HEPP/APP annual meeting 2010 Feedback on Nanosecond Timescales: maintaining luminosity at future linear colliders Ben Constance John Adams Institute,
1 Error study of non-scaling FFAG 10 to 20 GeV muon ring Shinji Machida CCLRC/RAL/ASTeC 26 July, ffag/machida_ ppt.
Overview of long pulse experiments at NML Nikolay Solyak PXIE Program Review January 16-17, PXIE Review, N.Solyak E.Harms, S. Nagaitsev, B. Chase,
Beam dynamics in crab collision K. Ohmi (KEK) IR2005, 3-4, Oct FNAL Thanks to K. Akai, K. Hosoyama, K. Oide, T. Sen, F. Zimmermann.
Wakefield effect in ATF2 Kiyoshi Kubo
Overview Step by step procedure to validate the model (slide 1 and 2) Procedure for the Ql / beam loading study (slide 3 and 4)
8 th February 2006 Freddy Poirier ILC-LET workshop 1 Freddy Poirier DESY ILC-LET Workshop Dispersion Free Steering in the ILC using MERLIN.
John Carwardine TDR Writing: FLASH 9mA Experiment.
Issues related to crossing angles Frank Zimmermann.
ILC Main Linac Beam Dynamics Review K. Kubo.
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
From Beam Dynamics K. Kubo
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Emittance Dilution and Preservation in the ILC RTML
dependence on QL can not longer be seen
Beam Dynamics in Curved ILC Main Linac (following earth curvature)
ILC Z-pole Calibration Runs Main Linac performance
Wake field limitations in a low gradient main linac of CLIC
DFS Simulations on ILC bunch compressor
Tolerances: Origins, Requirements, Status and Feasibility
Accelerator Physics Technical System Group Review
Overview Multi Bunch Beam Dynamics at XFEL
Final Focus Optics Test at ATF
Coupler Effects in High Energy Part of XFEL Linac
Compensation of Detector Solenoids
Upgrade on Compensation of Detector Solenoid effects
Main Linac Beam Optics and Tolerances
Presentation transcript:

On Cavity Tilt + Gradient Change (Beam Dynamics) K. Kubo K. Kubo

Transverse effect of acc. field with cavity tilt beam Transverse kick in the cavity:  pt = sin  eV Acc. field E, length L, tilt angle  offset: y 0 +Lsin  /2 offset: y 0 -Lsin  /2 entrance exit Transverse kick at the entrance:  pt = -eE (y 0 +sin  L/2)/2 Transverse kick at the exit:  pt = eE (y 0 -sin  L/2)/2 Edge (de)focus  Total transverse kick by the cavity:  pt = sin  eV/2

Cavity tilt change (vibration) and Fixed cavity tilt + voltage change have the same effect  orbit and emittance 3 micro-rad. tilt angle change, cavity to cavity random  0.8-sigma orbit change at the end of main linac  0.5 nm (2.5%) emittance growth Assuming fixed tilt angle (misalignment) RMS 300 micro-rad. 1% voltage change, cavity to cavity random  Same as above. –RF control stabilizes vector sum, not voltage of each cavity. –Cavities with different coupling, fed by one RF source.  voltage change during one pulse. –Different detuning (pulse to pulse)  pulse to pulse voltage change

time Vc time Transverse kick 1 2 total 1 klystron to 2 cavities RF control will keep total voltage flat. But, total transverse kick may change.

Orbit jitter sources in ML SourceAssumption (Tolerance?) Induced orbit jitter Induced emittance growth Quad vibration (offset change)100 nm1.5 sigma0.2 nm Quad+steering strength jitter1E-41 sigma0.1 nm Cavity tilt change3 urad0.8 sigma0.5 nm Cavity to cavity strength change, assuming 300 urad fixed tilt 1% Too tight ! 0.8 sigma 0.5 nm Tolerances, tolerable timescale depend on feedback performance.

Result of simulation Cavity tilt change 15 urad, equivalent to Fixed 300 urad + 5% gradient change (numbers are RMS) Starting linac at different energies (to see effective ness of orbit correction) E.g. if orbit is corrected at 50 GeV, emittance growth will be ~ 1 nm from 15 to 50 GeV plus ~ 2.5 nm from 50 to 250 GeV Total 3.5 nm, instead of 11 nm without such correction.

Intra-pulse orbit correction will loosen the tolerance of pulse to pulse change? If gradient change is same for all pulses –Orbit change is predictable and can be corrected. If gradient change is a simple function of time. – Orbit of head part of a pulse can be used for prediction of orbit of following part. Gradient change is slow (~ time constant of cavity filling time) –Intra-pulse feedback, similar to IP feedback (but ca be much slower), can be used. Probably possible. Available space in ML?

Summary Fast tilt change should be < 3 urad (mechanical motion) (Fixed tilt) x (Relative gradient change of each cavity) should be < 3 urad If gradient change is predicted, or slow enough, intra- pulse orbit correction will loosen the tolerance. We assume fixed cavity tilt 300 urad, then, gradient of each cavity flatness in a pulse should be (roughly) < 1% for pulse to pulse without intra-pulse correction < 5 % with intra-pulse correction (Numbers are RMS)