1 Pertemuan 13 Weak Slot-and-Filler Structures Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/2.

Slides:



Advertisements
Similar presentations
BEST FIRST SEARCH - BeFS
Advertisements

Session 2 Introduction to HyperText Markup Language 4 (HTML 4) Matakuliah: M0114/Web Based Programming Tahun: 2005 Versi: 5.
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
Hyperlink & Form Pertemuan 11 Matakuliah: L0182 / Web & Animation Design Tahun: 2008.
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan 16 First & Second Conditionals Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 12 Binary Search Tree Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
1 Pertemuan > Relational Model SQL DDL, SQL DML, Aljabar dan Kalkulus Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan 22 Radix Sort Matakuliah: T0016/Algoritma dan Pemrograman Tahun: 2005 Versi: versi 2.
1 Pertemuan 6 Elementary UDP Sockets Matakuliah: H0483 / Network Programming Tahun: 2005 Versi: 1.0.
1 Pertemuan 3 Heuristic Search Techniques Generate-and-Test Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan Perluasan E-R Matakuliah: >/ > Tahun: > Versi: >
12 - Organisation Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
Session 13 Active Server Pages (ASP) Matakuliah: M0114/Web Based Programming Tahun: 2005 Versi: 5.
1 Pertemuan 5 Knowledge Representation Issues Matakuliah: T0264/Inteligensia Semu Tahun: 2005 Versi: 1/0.
1 Pertemuan 22 Natural Language Processing Syntactic Processing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/2.
1 Pertemuan 19 Leftist Tree Heap Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
Pertemuan Entity Relationship Diagram
1 Pertemuan 16 Object Query Language (Lanjutan bagian 3) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 23 Object database design (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 18 Pembandingan Dua Populasi-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
06 - Advertising Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 02 LAN Matakuliah: H0451/Praktikum Jaringan Komputer Tahun: 2006 Versi: 1/0.
1 Pertemuan 14 Object Query Language (Lanjutan bagian 1) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 5 The structure part of object data model Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 04 Expression Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
07 - Advertising Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 9 Making an outline Matakuliah: G1072 – Reading 1 Tahun: 2005 Versi: revisi 0.
1 Pertemuan 21 Audit Reporting Matakuliah:A0274/Pengelolaan Fungsi Audit Sistem Informasi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Minimum Spanning Tree (MST) Matakuliah: T0534/Struktur Data Tahun: 2005 Versi: September 2005.
1 Pertemuan 05 Selection Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
1 Pertemuan 11 QUIZ Matakuliah: J0274/Akuntansi Manajemen Tahun: 2005 Versi: 01/00.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 11 Pengembangan Sistem Informasi dalam Bisnis Disiapkan oleh : Indra Tjahjani, Ir, SS, MLA, MMSI, Dr D 2422 Matakuliah: R0352 / Pengantar Teknologi.
1 Pertemuan 09 Database Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
1 Pertemuan 18 I wish, If only Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 7 The Object Definition Language Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 13 AVL Tree Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
1 Minggu 2, Pertemuan 3 The Relational Model Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
1 Pertemuan 12 Sampling dan Sebaran Sampling-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 09 Binary Tree Matakuliah: T0534/Struktur Data Tahun: 2005 Versi: September 2005.
1 Pertemuan #3 Clocks and Realtime Matakuliah: H0232/Sistem Waktu Nyata Tahun: 2005 Versi: 1/5.
1 Pertemuan 14 Phrases of agreement Matakuliah: G0134/Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 25 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
1 Pertemuan 04 MODEL RELASIONAL Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan 10 The Manipulative part of the object data model (Lanjutan bagian 1) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 11 Tree & Binary Tree Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
1 Pertemuan 20 Understanding Continued Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Minggu 10, Pertemuan 19 Normalization (cont.) Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
1 Pertemuan 8 The Object Definition Language (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan 23 Normalisasi Matakuliah: >/ > Tahun: > Versi: >
The Relational Model Pertemuan 03 Matakuliah: M0564 /Pengantar Sistem Basis Data Tahun : 2008.
Intro to Computation & AI Dr. Jill Fain Lehman School of Computer Science Lecture 5: November 20, 1997.
1 Pertemuan 26 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
1 Pertemuan 20 Teknik Sort II Matakuliah: T0016/Algoritma dan Pemrograman Tahun: 2005 Versi: versi 2.
1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Forming the Passive Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 8 Perenc & Peranc Sambungan Matakuliah: D0472/PERANCANGAN ELEMEN MESIN Tahun: 2005 Versi:
1 Pertemuan 13: PREFIXES Matakuliah: G0942/Listening 1 Tahun: 2005 Versi: baru.
Pertemuan 5 Knowledge Representation Issues
Table Pertemuan 10 Matakuliah : L0182 / Web & Animation Design
Pertemuan 22 The Business Views of the Technology Architecture
ARTIFICIAL INTELLIGENCE
(edited by Nadia Al-Ghreimil)
Matakuliah : Web Design
Issues in Knowledge Representation
ARTIFICIAL INTELLIGENCE
Weak Slot-and-Filler Structures
Presentation transcript:

1 Pertemuan 13 Weak Slot-and-Filler Structures Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/2

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : >

3 Outline Materi Materi 1 Materi 2 Materi 3 Materi 4 Materi 5

Frames Frame (Bingkai). Frame merupakan kumpulan pengetahuan tentang suatu obyek tertentu, peristiwa, lokasi, situasi atau informasi lainnya. Frame memiliki slot yang menggambarkan rincian (atribut) dan karakteristik obyek. Frame biasanya digunakan untuk merepresentasikan pengetahuan yang didasarkan pada karakteristik yang sudah dikenal yang merupakan pengalaman-pengalaman.

5 Frames Dengan menggunakan Frame maka sangat mudah untuk membuat inferensi tentang obyek, peristiwa atau situasi baru. Hal ini karena Frame menyediakan basis pengetahuan yang ditarik dari pengalaman.

6 Frames : Transportasi Darat Macam Mobil Mobil sedan Mobil minibus Alat Transportasi Transp. Laut Transp. Darat Macam Angk Darat Angk. Tanpa mesin Slot Mobil Jenis BBM Mobil Bensi Mobi Solar

7 Frames A Simplified Frame System Person isa : Mammal cardinality: 6,000, * handed: Right Adult-Male isa :Person cardinality :2,000,000,000 *height :5-10 ML-Baseball-Player Isa: Adult-Male Cardinality: 624 *height: 6-1 *bats: equal to handed *batting-average :.252 *team: *uniform-color:

8 Representing the Class of All Teams as a Metaclass Class instance:Class isa : Class *cardinality : Team instance:Class isa : Class cardinality :{the number of teams that exist} *team size : {each team has a size} ML-Baseball-Team instance:Class isa : Class cardinality :26 {the number of baseball team that exist} *team size : 24 {default 24 players on team} *manager Brooklyn-Dodgers instance:ML-Baseball-Team isa : ML-Basball-Plyer team size : 24 manager : Lea-Durocher *uniform-color : Blue Pee-Wee-Reese instance:Brooklyn-Dodgers isa : Fielder uniform color : Blue batting-average :.309

9 Classes and Metaclasses

10 Representing Relationships among Classes

11 Representing Relationships among Classes ML-Baseball-Player is-covered-by :{Pitcher, Catcher, Fielder} {American-Leaguer, National-Leaguer} Pitcher isa: ML-Baseball-Player mutually-disjoint-with : {Catcher, Fielder} Catcher isa: ML-Baseball-Player mutually-disjoint-with : {Pitcher, Fielder} Fielder isa: ML-Baseball-Player mutually-disjoint-with : {Pitcher, Catcher} American-Leaguer isa: ML-Baseball-Player mutually-disjoint-with : {National-Leaguer} National-Leaguer isa: ML-Baseball-Player mutually-disjoint-with : {American-Leaguer} Three-Finger-Brown instance : Pitcher instance : National-Leaguer

12 Slots as Full-Fledged Objects We want to be able to represent and use the following properties of slots (attributes or relations) : The classes to which the attribute can be attached. Constraints on either the type or the value of the attribute. A value that all instances of a class must have by the definition of the class. A default value for the attribute. Rules for inheriting values for the attribute.

13 Slots as Full-Fledged Objects Rules for computing a value separately from inheritance. An inverse attribute. Whether the slots is single-valued or multivalued.

14 Representing Slots as Frames, I

15 Representing Slots as Frame, II Slots isa : Class instance : Class domain : range : range-constraint: definition : default : transfers-through: to-compute : inverse : single-valued :

16 Representing Slots as Frame, II manager instance :slots domain :ML-Baseball-Team range :Person range-constraint : x(experience x.manager) default : inverse : manager-of single-valued: TRUE

17 Representing Slots as Frames, III my-manager Instance:Slot Domain:ML-Baseball-Player Range:Person Range-constraint : x(experience x.my-manager) To-compute : x (x.team).manager Single-valued:TRUE Color Instance:Slot Domain:Physical-Object Range:Color-Set Transfers-through:Top-level-part-of Visual-salience:High Single-valued:FALSE

18 Representing Slots as Frames, IV Uniform-color Instance:Slot Isa:color Domain:Team-player Range:Color-Set Range-constraint:not Pink Visual-salience:High Single-valued:FALSE Bats Instance:Slot Domain:ML-Baseball-Player Range:{Left, Right, Switch} To-compute : x x.handed Single-valued:TRUE

19 Tangled Hierarchies Hierarchies that are not trees are called tangled hierarchies We want to decide whether Fifi can fly The correct answer is no

20 Tangled Hierarchies Determining whether Dick is a pacifist. Transverse multiple instance link and more than one answer can be found along the path.

21 More Tangled Hierarchies

22 More Tangled Hierarchies In the case of (a), our new algorithm reaches Bird (via Pet-Bird) before it reaches Ostrich. So it report that Fifi can fly. In the case (b), the algorithm reaches Quaker and stops without noticing a contradiction. The problem is that path length does not always corresponds to the level of generality of class. The solution to this problem is to base our inheritance algorithm not on path length but on the notion of inferential distance, which can be defined as follows :

23 Defining Property Inheritance Inferential Distance : Class1 is closer to Class2 than to Class3 if and only if Class1 has an inference path through Class2 to Class3 (in other words, Class2 is between Class1 and Class3) We can now define the result of inheritance as follows : The set of competing values for a slot S in a frame F contains all those values that Can be derived from some frame X that is above F in the isa hierarchy Are not contradicted by some frame Y that has a shorter inferential distance to F than X does

24 Algorithm : Property Inheritance To retrieve a value V for slot S of an instance F do : 1.Set CANDIDATES to empty. 2.Do breadth-first or Dept-first search up the isa hierarchy from F, following all instance and isa link. At each step, see if a value for S or one of its generalizations is stored. a.If a value is found, add it to CANDIDATES and terminate that branch of the search. b.If no value is found but there instance or isa link upward, follow them. c.Otherwise terminate the branch.

25 Algorithm : Property Inheritance 3. For each element C of CANDIDATES do : a.See if there is any other element of CANDIDATES that was derived from a class closer to F than the class from which C came. b.If there is, then removed C from CANDIDATES. 4.Check the cardinality of CANDIDATES : a.If it is 0, then report that no value was found. b.If it is 1, then return the single element of CANDIDATES as V. c.If it is greater then 1, report a contradiction.

26 > End of Pertemuan 13 Good Luck For Medial Semester Test