1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.

Slides:



Advertisements
Similar presentations
QUANTITATIVE METHODS FOR BUSINESS 8e
Advertisements

Decision Theory.
Decision Analysis Chapter 3
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Ch 7 Decision theory Learning objectives: After completing this chapter, you should be able to: 1.Outline the characteristics of a decision theory approach.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Decision Analysis. What is Decision Analysis? The process of arriving at an optimal strategy given: –Multiple decision alternatives –Uncertain future.
Lecture 5 Decision Analysis Chapter 14.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Dr. C. Lightner Fayetteville State University
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
BA 452 Lesson C.3 Statistical Decision Making ReadingsReadings Chapter 13 Decision Analysis.
Chapter 4 Decision Analysis.
Decision Analysis Chapter 13.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Part 3 Probabilistic Decision Models
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Business 260: Managerial Decision Analysis
BA 555 Practical Business Analysis
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Decision Making Under Uncertainty Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
“ The one word that makes a good manager – decisiveness.”
©2003 Thomson/South-Western 1 Chapter 19 – Decision Making Under Uncertainty Slides prepared by Jeff Heyl, Lincoln University ©2003 South-Western/Thomson.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Supplement S2 Decision Analysis To.
Chapter 9 - Decision Analysis - Part I
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Lecture 6 Decision Making.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Data Analysis and Decision Making (Albrigth, Winston and Zappe)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Decision Analysis Anderson, Sweeney and Williams Chapter 4 Read: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and appendix 4.1.
Decision Making Under Uncertainty: Pay Off Table and Decision Tree.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chapter 19 Statistical Decision Theory ©. Framework for a Decision Problem action i.Decision maker has available K possible courses of action : a 1, a.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 4 Decision Analysis Building the Structure for Solving.
DECISION THEORY & DECISION TREE
Chapter Twenty McGraw-Hill/Irwin
Decision Analysis Chapter 15.
Operations Management
Steps to Good Decisions
John Loucks St. Edward’s University . SLIDES . BY.
MNG221- Management Science –
Chapter 13 Decision Analysis
Statistical Decision Theory
Presentation transcript:

1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE METHODS FOR BUSINESS 8e QUANTITATIVE METHODS FOR BUSINESS 8e

2 2 Slide Chapter 4 Decision Analysis, Part A n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities

3 3 Slide Problem Formulation n A decision problem is characterized by decision alternatives, states of nature, and resulting payoffs. n The decision alternatives are the different possible strategies the decision maker can employ. n The states of nature refer to future events, not under the control of the decision maker, which may occur. States of nature should be defined so that they are mutually exclusive and collectively exhaustive.

4 4 Slide Influence Diagram n An influence diagram is a graphical device showing the relationships among the decisions, the chance events, and the consequences. n Squares or rectangles depict decision nodes. n Circles or ovals depict chance nodes. n Diamonds depict consequence nodes. n Lines or arcs connecting the nodes show the direction of influence.

5 5 Slide Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature is a payoff. n A table showing payoffs for all combinations of decision alternatives and states of nature is a payoff table. n Payoffs can be expressed in terms of profit, cost, time, distance or any other appropriate measure.

6 6 Slide Decision Trees n A decision tree is a chronological representation of the decision problem. n Each decision tree has two types of nodes; round nodes correspond to the states of nature while square nodes correspond to the decision alternatives. n The branches leaving each round node represent the different states of nature while the branches leaving each square node represent the different decision alternatives. n At the end of each limb of a tree are the payoffs attained from the series of branches making up that limb.

7 7 Slide Decision Making without Probabilities n Three commonly used criteria for decision making when probability information regarding the likelihood of the states of nature is unavailable are: the optimistic approachthe optimistic approach the conservative approachthe conservative approach the minimax regret approach.the minimax regret approach.

8 8 Slide Optimistic Approach n The optimistic approach would be used by an optimistic decision maker. n The decision with the largest possible payoff is chosen. n If the payoff table was in terms of costs, the decision with the lowest cost would be chosen.

9 9 Slide Conservative Approach n The conservative approach would be used by a conservative decision maker. n For each decision the minimum payoff is listed and then the decision corresponding to the maximum of these minimum payoffs is selected. (Hence, the minimum possible payoff is maximized.) n If the payoff was in terms of costs, the maximum costs would be determined for each decision and then the decision corresponding to the minimum of these maximum costs is selected. (Hence, the maximum possible cost is minimized.)

10 Slide Minimax Regret Approach n The minimax regret approach requires the construction of a regret table or an opportunity loss table. n This is done by calculating for each state of nature the difference between each payoff and the largest payoff for that state of nature. n Then, using this regret table, the maximum regret for each possible decision is listed. n The decision chosen is the one corresponding to the minimum of the maximum regrets.

11 Slide Example Consider the following problem with three decision alternatives and three states of nature with the following payoff table representing profits: States of Nature States of Nature s 1 s 2 s 3 s 1 s 2 s 3 d d Decisions d Decisions d d d

12 Slide Example n Optimistic Approach An optimistic decision maker would use the optimistic approach. All we really need to do is to choose the decision that has the largest single value in the payoff table. This largest value is 5, and hence the optimal decision is d 3. Maximum Maximum Decision Payoff Decision Payoff d 1 4 d 1 4 d 2 3 d 2 3 choose d 3 d 3 5 maximum choose d 3 d 3 5 maximum

13 Slide Example n Formula Spreadsheet for Optimistic Approach

14 Slide Example n Solution Spreadsheet for Optimistic Approach

15 Slide Example n Conservative Approach A conservative decision maker would use the conservative approach. List the minimum payoff for each decision. Choose the decision with the maximum of these minimum payoffs. Minimum Minimum Decision Payoff Decision Payoff d 1 -2 d 1 -2 choose d 2 d 2 -1 maximum choose d 2 d 2 -1 maximum d 3 -3 d 3 -3

16 Slide Example n Formula Spreadsheet for Conservative Approach

17 Slide Example n Solution Spreadsheet for Conservative Approach

18 Slide Example n Minimax Regret Approach For the minimax regret approach, first compute a regret table by subtracting each payoff in a column from the largest payoff in that column. In this example, in the first column subtract 4, 0, and 1 from 4; in the second column, subtract 4, 3, and 5 from 5; etc. The resulting regret table is: s 1 s 2 s 3 s 1 s 2 s 3 d d d d d d

19 Slide Example n Minimax Regret Approach (continued) For each decision list the maximum regret. Choose the decision with the minimum of these values. Decision Maximum Regret Decision Maximum Regret choose d 1 d 1 1 minimum choose d 1 d 1 1 minimum d 2 4 d 2 4 d 3 3 d 3 3

20 Slide Example n Formula Spreadsheet for Minimax Regret Approach

21 Slide Example n Solution Spreadsheet for Minimax Regret Approach

22 Slide Decision Making with Probabilities n Expected Value Approach If probabilistic information regarding he states of nature is available, one may use the expected value (EV) approach.If probabilistic information regarding he states of nature is available, one may use the expected value (EV) approach. Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring.Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring. The decision yielding the best expected return is chosen.The decision yielding the best expected return is chosen.

23 Slide Expected Value of a Decision Alternative n The expected value of a decision alternative is the sum of weighted payoffs for the decision alternative. n The expected value (EV) of decision alternative d i is defined as: where: N = the number of states of nature P ( s j ) = the probability of state of nature s j P ( s j ) = the probability of state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j

24 Slide Example: Burger Prince Burger Prince Restaurant is contemplating opening a new restaurant on Main Street. It has three different models, each with a different seating capacity. Burger Prince estimates that the average number of customers per hour will be 80, 100, or 120. The payoff table for the three models is as follows: Average Number of Customers Per Hour Average Number of Customers Per Hour s 1 = 80 s 2 = 100 s 3 = 120 s 1 = 80 s 2 = 100 s 3 = 120 Model A $10,000 $15,000 $14,000 Model A $10,000 $15,000 $14,000 Model B $ 8,000 $18,000 $12,000 Model B $ 8,000 $18,000 $12,000 Model C $ 6,000 $16,000 $21,000 Model C $ 6,000 $16,000 $21,000

25 Slide Example: Burger Prince n Expected Value Approach Calculate the expected value for each decision. The decision tree on the next slide can assist in this calculation. Here d 1, d 2, d 3 represent the decision alternatives of models A, B, C, and s 1, s 2, s 3 represent the states of nature of 80, 100, and 120.

26 Slide Example: Burger Prince n Decision Tree d1d1d1d1 d2d2d2d2 d3d3d3d3 s1s1s1s1 s1s1s1s1 s1s1s1s1 s2s2s2s2 s3s3s3s3 s2s2s2s2 s2s2s2s2 s3s3s3s3 s3s3s3s3 Payoffs 10,000 15,000 14,000 8,000 18,000 12,000 6,000 16,000 21,

27 Slide Example: Burger Prince n Expected Value For Each Decision Choose the model with largest EV, Model C. 33 d1d1d1d1 d2d2d2d2 d3d3d3d3 EMV =.4(10,000) +.2(15,000) +.4(14,000) = $12,600 = $12,600 EMV =.4(8,000) +.2(18,000) +.4(12,000) = $11,600 = $11,600 EMV =.4(6,000) +.2(16,000) +.4(21,000) = $14,000 = $14,000 Model A Model B Model C

28 Slide Example: Burger Prince n Formula Spreadsheet for Expected Value Approach

29 Slide n Solution Spreadsheet for Expected Value Approach Example: Burger Prince

30 Slide The End of Chapter 4, Part A