Non-Cooperative Game Theory To define a game, you need to know three things: –The set of players –The strategy sets of the players (i.e., the actions they.

Slides:



Advertisements
Similar presentations
5. Combining simultaneous and sequential moves.
Advertisements

Some Problems from Chapt 13
Infinitely Repeated Games
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Crime, Punishment, and Forgiveness
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
1 Welcome to EC 209: Managerial Economics- Group A By: Dr. Jacqueline Khorassani Week Eleven.
Infinitely Repeated Games. In an infinitely repeated game, the application of subgame perfection is different - after any possible history, the continuation.
Chapter 14 Infinite Horizon 1.Markov Games 2.Markov Solutions 3.Infinite Horizon Repeated Games 4.Trigger Strategy Solutions 5.Investing in Strategic Capital.
1 Game Theory. By the end of this section, you should be able to…. ► In a simultaneous game played only once, find and define:  the Nash equilibrium.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
1 Game Theory. 2 Agenda Game Theory Matrix Form of a Game Dominant Strategy and Dominated Strategy Nash Equilibrium Game Trees Subgame Perfection.
Infinitely Repeated Games Econ 171. Finitely Repeated Game Take any game play it, then play it again, for a specified number of times. The game that is.
EC941 - Game Theory Lecture 7 Prof. Francesco Squintani
Game Theory: Inside Oligopoly
EKONOMSKA ANALIZA PRAVA. Game Theory Outline of the lecture: I. What is game theory? II. Elements of a game III. Normal (matrix) and Extensive (tree)
ECO290E: Game Theory Lecture 9 Subgame Perfect Equilibrium.
Short introduction to game theory 1. 2  Decision Theory = Probability theory + Utility Theory (deals with chance) (deals with outcomes)  Fundamental.
Game Theory Lecture 8.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Chapter 11 Game Theory and the Tools of Strategic Business Analysis.
STRATEGIC DECISION MAKING
Games People Play. 8: The Prisoners’ Dilemma and repeated games In this section we shall learn How repeated play of a game opens up many new strategic.
EC102: Class 9 Christina Ammon.
A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes, “You can’t outrun a bear,” scoffs the camper. His.
Chapter 12 Choices Involving Strategy McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All Rights Reserved.
Basics on Game Theory For Industrial Economics (According to Shy’s Plan)
More on Extensive Form Games. Histories and subhistories A terminal history is a listing of every play in a possible course of the game, all the way to.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Fourteen Game Theory.
APEC 8205: Applied Game Theory Fall 2007
Game Theory Here we study a method for thinking about oligopoly situations. As we consider some terminology, we will see the simultaneous move, one shot.
Repeated games - example This stage game is played 2 times Any SPNE where players behave differently than in a 1-time game? Player 2 LMR L1, 10, 05, 0.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Fourteen Game Theory.
Static Games of Complete Information: Subgame Perfection
1 Lecture 2: What is game theory?*  Formal analysis of strategic behaviour, that is, relation between inter-dependent agents. The interplay of competition.
QR 38, 2/22/07 Strategic form: dominant strategies I.Strategic form II.Finding Nash equilibria III.Strategic form games in IR.
Game Theoretic Analysis of Oligopoly lr L R 0000 L R 1 22 The Lane Selection Game Rational Play is indicated by the black arrows.
Communication Networks A Second Course Jean Walrand Department of EECS University of California at Berkeley.
© 2009 Institute of Information Management National Chiao Tung University Lecture Notes II-2 Dynamic Games of Complete Information Extensive Form Representation.
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
Managerial Economics & Business Strategy
Chapter 12 Choices Involving Strategy Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written.
Monetary Economics Game and Monetary Policymaking.
Dynamic Games of complete information: Backward Induction and Subgame perfection - Repeated Games -
Standard and Extended Form Games A Lesson in Multiagent System Based on Jose Vidal’s book Fundamentals of Multiagent Systems Henry Hexmoor, SIUC.
Dynamic Games & The Extensive Form
Game-theoretic analysis tools Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
Chapters 29, 30 Game Theory A good time to talk about game theory since we have actually seen some types of equilibria last time. Game theory is concerned.
Topic 3 Games in Extensive Form 1. A. Perfect Information Games in Extensive Form. 1 RaiseFold Raise (0,0) (-1,1) Raise (1,-1) (-1,1)(2,-2) 2.
제 10 장 게임이론 Game Theory: Inside Oligopoly
Final Lecture. Problem 2, Chapter 13 Exploring the problem Note that c, x yields the highest total payoff of 7 for each player. Is this a Nash equilibrium?
Strategic Behavior in Business and Econ Static Games of complete information: Dominant Strategies and Nash Equilibrium in pure and mixed strategies.
Subgames and Credible Threats (with perfect information) Econ 171.
Subgames and Credible Threats
Dynamic games, Stackelburg Cournot and Bertrand
Topics to be Discussed Gaming and Strategic Decisions
Extensive Form (Dynamic) Games With Perfect Information (Theory)
Lec 23 Chapter 28 Game Theory.
Econ 545, Spring 2016 Industrial Organization Dynamic Games.
ECO290E: Game Theory Lecture 8 Games in Extensive-Form.
Entry Deterrence Players Two firms, entrant and incumbent Order of play Entrant decides to enter or stay out. If entrant enters, incumbent decides to fight.
ECO290E: Game Theory Lecture 10 Examples of Dynamic Games.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 2.1.Dynamic Games of Complete and Perfect Information Lecture
Learning 6.2 Game Theory.
Chapter 29 Game Theory Key Concept: Nash equilibrium and Subgame Perfect Nash equilibrium (SPNE)
Game Theory.
Chapter 14 & 15 Repeated Games.
Chapter 14 & 15 Repeated Games.
Molly W. Dahl Georgetown University Econ 101 – Spring 2009
Presentation transcript:

Non-Cooperative Game Theory To define a game, you need to know three things: –The set of players –The strategy sets of the players (i.e., the actions they can take) –The payoff functions

Game A Players Strategy sets for each player Payoffs for each player, for each possible outcome Payoff to RowPayoff to Column

Game B

What happened in these two games? –What were the strategies? –What were the outcomes? Why did we get these outcomes? Should we have expected these outcomes? In other words -- How do we solve these games?

Solving Games We are looking for the equilibrium. What is equilibrium? –Equilibrium is a strategy combination where no one player has an incentive to change her strategy given the strategies of the other players. Huh?

Game A

Nash Equilibrium (NE) Formally, a set of strategies forms a NE if, for every player i,  i (s i, s -i )   i (s i*, s -i ). Note that the equilibrium is defined in terms of strategies, not payoffs. Why is this a solution? Because it’s a rest point - no incentive for one player to change unilaterally.

How Do We Find NE? Elimination of Dominated Strategies. A player has a dominated strategy if there is one action/strategy which always provides a lower payoff than another strategy, no matter what other players do. If you cross off all dominated strategies, sometimes you are left with only NE.

Game A

Repeated elimination can find the NE

Elimination of dominated strategies only works if the strategies are strictly dominated –Always worse, not just equal to or worse

Sometimes there aren’t dominated strategies so you have to check for NE cell by cell

Sometimes there aren’t any NE

We can use the “Normal” or matrix form if: –There are only 2 (sometimes 3) players –There are a finite number of strategies –Actions approximately simultaneous If actions are sequential, must use another form, the “Extensive” form: –Still only really feasible for 2 or 3 players, although can accommodate “chance” –Still must have finite number of strategies

Extensive Form Games Use a game “tree” to depict the order in which players make decisions and the choices that they have at each decision point. Decision points are called “nodes”. Players’ strategies or choices branch off from each decision node. At the end of each branch on the game tree are the payoffs the players would receive if that branch were the path followed.

US vs. Saudi Arabia Oil “Game” Quota Tariff Nothing R R R N N N 90,80 100,60 75,50 100,60 40,80 50,100 US Saudi Arabia

Solving Extensive Form Games Nash Equilibrium has the same meaning in extensive form games as in normal form games. There is also another solution concept in extensive form games, the Subgame Perfect Equilibrium (SPE) strategy which has some advantages over Nash Equilibrium.

US vs. Saudi Arabia Oil “Game” Quota Tariff Nothing R R R N N N 90,80 100,60 75,50 100,60 40,80 50,100 US Saudi Arabia Subgame = part of larger game that can stand alone as a game itself.

Sub-Game Perfect Equilibrium A subgame can be defined for any node other than a terminal (payoff) node, and includes all of the subsequent “branches” of the tree that emanate from that node. For a strategy to be a Subgame Perfect Equilibrium (SPE) strategy, it can only contain actions that are optimal for their respective subgames.

Quota Tariff Nothing R R R N N N 90,80 100,60 75,50 100,60 40,80 50,100 US Saudi Arabia

Quota Tariff Nothing R R R N N N 90,80 100,60 75,50 100,60 40,80 50,100 US Saudi Arabia To find all of the Subgame Perfect Equilibria: For each subgame, determine the optimal strategy. Find the optimal strategy for the “pruned” tree.

Quota Tariff Nothing R R R N N N 90,80 100,60 75,50 100,60 40,80 50,100 US Saudi Arabia Compare Subgame Perfect Equilibria (SPE) to NE: NE can include incredible threats, along as unilateral changes are not optimal. Example:Quota; R if Quota or Tariff, N if Nothing

Another Example Enter Stay Out High P Low P High P Low P 2,2 -1,0 0,5 0,0 Entrant Incumbent Find optimal strategy for each subgame (prune the tree). Find Entrant’s optimal action.

Repeated Games In repeated games, strategies are much richer. In a one-shot Prisoner’s Dilemma game, players can either cooperate or defect. In a repeated game, players choose whether to cooperate or defect each period. Players can have strategies that are contingent on the other player's actions. –Cooperate if the other player cooperated last period. –Defect if the other player has ever defected. Note: In repeated games, must discount future payoffs. – (1/(1+r)) t =  t is the discount factor for period t.

Solving Repeated Games If the game has a finite horizon (that is, it ends after a specified number of rounds), you use backwards induction. –Start by finding the optimal strategy in the last period –Move to the next to the last period, and find the optimal strategy, recognizing the effects on the final round. If the game has an infinite horizon, you can't use backwards induction because there is no last period. To solve infinite horizon games, you check different strategies to see if they meet the requirements of equilibrium. –For each player, changing strategies unilaterally will not make the player better off.

Solving Repeated Prisoner’s Dilemma Games For finite horizon repeated PD, use backwards induction. –In the last period, always optimal to defect –If your action in the next-to-the-last period does not affect the optimal strategy in the last period, you do better by defecting in the next to the last period –And so on…. For finite horizon repeated PD, collusion is never optimal.

Solving Repeated Prisoner’s Dilemma Games For infinite horizon repeated PD, consider different strategies. “Grim Trigger” strategy: –Cooperate as long as other player cooperates, but once he defects, defect forever. –His defection “triggers” the punishment. –“Grim” because punishment lasts forever. To check if there is a symmetric equilibrium with trigger strategies: –Make sure that cooperating is better than defecting if other player has cooperated. –Make sure that “punishment” is a credible threat, that you will actually go through with it.

Prisoner’s Dilemma

When Are Trigger Strategies are NE? Assume other player also using a trigger strategy. If neither has defected, both cooperate this period. If you follow the trigger strategy, i.e. cooperate, you get  C this period (the payoff from cooperation) and you get  C each period in the future. –An infinite stream of payments of  C can be written as 1/(1-  )*  C. If you defect, you get  D this period (the increased payoff from unilateral defection) but in all future periods you get  P (the punishment payoff level) –Total earnings thus are  D +  /(1-  )*  P. Thus following the strategy is optimal if: 1/(1-  )*  C >  D +  /(1-  )*  P.

When Are Trigger Strategies are NE, con’t? The condition 1/(1-  )*  C >  D +  /(1-  )*  P can be rewritten as:  > (  D -  C ) / (  D -  P ) So the discount factor, , must be sufficiently large for collusion to be sustainable. How do we interpret this? –A high discount factor means that payoffs in the future are relatively important. –You are willing to forsake immediate, but transitory gains from defection for higher payoffs in the future.

When Are Trigger Strategies are NE, con’t? Is punishment a credible threat? Once again, assume other player also using a trigger strategy. If either has defected, both will punish this period. If you follow the trigger strategy, i.e. punish, you get  P this period and you get  P each period in the future. If you don’t punish, you will get a lower payoff, since defecting is a best response to other players playing defecting. Therefore the punishment is a credible threat.