6-1 LECTURE 6: MULTIAGENT INTERACTIONS An Introduction to MultiAgent Systems

Slides:



Advertisements
Similar presentations
Concepts of Game Theory I
Advertisements

Concepts of Game Theory II. 2 The prisioners reasoning… Put yourself in the place of prisoner i (or j)… Reason as follows: –Suppose I cooperate… If j.
The Basics of Game Theory
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
SIF8072 Distributed Artificial Intelligence and Intelligent Agents
Multiagent Interactions
Game Theory “Доверяй, Но Проверяй” - Russian Proverb (Trust, but Verify) - Ronald Reagan Mike Shor Lecture 6.
Game Theory “Доверяй, Но Проверяй” (“Trust, but Verify”) - Russian Proverb (Ronald Reagan) Topic 5 Repeated Games.
Non-Cooperative Game Theory To define a game, you need to know three things: –The set of players –The strategy sets of the players (i.e., the actions they.
1 Game Theory. By the end of this section, you should be able to…. ► In a simultaneous game played only once, find and define:  the Nash equilibrium.
An Introduction to... Evolutionary Game Theory
 1. Introduction to game theory and its solutions.  2. Relate Cryptography with game theory problem by introducing an example.  3. Open questions and.
Coye Cheshire & Andrew Fiore March 21, 2012 // Computer-Mediated Communication Collective Action and CMC: Game Theory Approaches and Applications.
Multi-player, non-zero-sum games
Games What is ‘Game Theory’? There are several tools and techniques used by applied modelers to generate testable hypotheses Modeling techniques widely.
Prisoner’s Dilemma. The scenario In the Prisoner’s Dilemma, you and Lucifer are picked up by the police and interrogated in separate cells without the.
An Introduction to Game Theory Part I: Strategic Games
Game Theory Part 5: Nash’s Theorem.
5/16/20151 Game Theory Game theory was developed by John Von Neumann and Oscar Morgenstern in Economists! One of the fundamental principles of.
Econ 2610: Principles of Microeconomics Yogesh Uppal
Chapter 11 What is Utility? A way of representing preferences Utility is not money (but it is a useful analogy) Typical relationship between utility &
GAME THEORY By Ben Cutting & Rohit Venkat. Game Theory: General Definition  Mathematical decision making tool  Used to analyze a competitive situation.
Slide 1 of 13 So... What’s Game Theory? Game theory refers to a branch of applied math that deals with the strategic interactions between various ‘agents’,
Arguments for Recovering Cooperation Conclusions that some have drawn from analysis of prisoner’s dilemma: – the game theory notion of rational action.
A Memetic Framework for Describing and Simulating Spatial Prisoner’s Dilemma with Coalition Formation Sneak Review by Udara Weerakoon.
Arguments for Recovering Cooperation Conclusions that some have drawn from analysis of prisoner’s dilemma: the game theory notion of rational action is.
APEC 8205: Applied Game Theory Fall 2007
Game Theory Here we study a method for thinking about oligopoly situations. As we consider some terminology, we will see the simultaneous move, one shot.
Design of Multi-Agent Systems Teacher Bart Verheij Student assistants Albert Hankel Elske van der Vaart Web site
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
1 Section 2d Game theory Game theory is a way of thinking about situations where there is interaction between individuals or institutions. The parties.
TOPIC 6 REPEATED GAMES The same players play the same game G period after period. Before playing in one period they perfectly observe the actions chosen.
PRISONER’S DILEMMA By Ajul Shah, Hiten Morar, Pooja Hindocha, Amish Parekh & Daniel Castellino.
QR 38, 2/22/07 Strategic form: dominant strategies I.Strategic form II.Finding Nash equilibria III.Strategic form games in IR.
Coye Cheshire & Andrew Fiore June 28, 2015 // Computer-Mediated Communication Game Theory, Games, and CMC.
On Bounded Rationality and Computational Complexity Christos Papadimitriou and Mihallis Yannakakis.
Today: Some classic games in game theory
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
A Game-Theoretic Approach to Strategic Behavior. Chapter Outline ©2015 McGraw-Hill Education. All Rights Reserved. 2 The Prisoner’s Dilemma: An Introduction.
Dynamic Games of complete information: Backward Induction and Subgame perfection - Repeated Games -
Standard and Extended Form Games A Lesson in Multiagent System Based on Jose Vidal’s book Fundamentals of Multiagent Systems Henry Hexmoor, SIUC.
THE “CLASSIC” 2 x 2 SIMULTANEOUS CHOICE GAMES Topic #4.
Finite Iterated Prisoner’s Dilemma Revisited: Belief Change and End Game Effect Jiawei Li (Michael) & Graham Kendall University of Nottingham.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
Chapter 12 - Imperfect Competition: A Game-Theoretic Approach Copyright © 2015 The McGraw-Hill Companies, Inc. All rights reserved.
LECTURE 6: MULTIAGENT INTERACTIONS
Chapter 10: Games and Strategic Behavior
Lecture 5 Introduction to Game theory. What is game theory? Game theory studies situations where players have strategic interactions; the payoff that.
Section 2 – Ec1818 Jeremy Barofsky
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Normal Form Games, Normal Form Games, Rationality and Iterated Rationality and Iterated Deletion of Dominated Strategies Deletion of Dominated Strategies.
Mohsen Afsharchi Multiagent Interaction. What are Multiagent Systems?
Game tree search Thanks to Andrew Moore and Faheim Bacchus for slides!
Game theory (Sections )
1 Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. Franz J. Kurfess CPE/CSC 580: Intelligent Agents 1.
Oligopoly CHAPTER 13B. Oligopoly IRL In some markets there are only two firms. Computer chips are an example. The chips that drive most PCs are made by.
Arguments for Recovering Cooperation Conclusions that some have drawn from analysis of prisoner’s dilemma: – the game theory notion of rational action.
Advanced Subjects in GT Outline of the tutorials Static Games of Complete Information Introduction to games Normal-form (strategic-form) representation.
1 Fahiem Bacchus, University of Toronto CSC384: Intro to Artificial Intelligence Game Tree Search I ● Readings ■ Chapter 6.1, 6.2, 6.3, 6.6 ● Announcements:
Game theory Chapter 28 and 29
LECTURE 6: MULTIAGENT INTERACTIONS
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
LECTURE 6: MULTIAGENT INTERACTIONS
Introduction to Game Theory
Game theory Chapter 28 and 29
Oligopoly & Game Theory Lecture 27
Decision Theory and Game Theory
LECTURE 6: MULTIAGENT INTERACTIONS
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Presentation transcript:

6-1 LECTURE 6: MULTIAGENT INTERACTIONS An Introduction to MultiAgent Systems

6-2 What are Multiagent Systems?

6-3 MultiAgent Systems Thus a multiagent system contains a number of agents… …which interact through communication… …are able to act in an environment… …have different “spheres of influence” (which may coincide)… …will be linked by other (organizational) relationships

6-4 Utilities and Preferences Assume we have just two agents: Ag = {i, j} Agents are assumed to be self-interested: they have preferences over how the environment is Assume  {  1  2  …} is the set of “outcomes” that agents have preferences over We capture preferences by utility functions: u i =   ú u j =   ú Utility functions lead to preference orderings over outcomes:  š i  ’ means u i (  ) $ u i (  ’)  ™ i  ’ means u i (  ) > u i (  ’)

6-5 What is Utility? Utility is not money (but it is a useful analogy) Typical relationship between utility & money:

6-6 Multiagent Encounters We need a model of the environment in which these agents will act…  agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in  will result  the actual outcome depends on the combination of actions  assume each agent has just two possible actions that it can perform, C (“cooperate”) and D (“defect”) Environment behavior given by state transformer function:

6-7 Multiagent Encounters Here is a state transformer function: (This environment is sensitive to actions of both agents.) Here is another: (Neither agent has any influence in this environment.) And here is another: (This environment is controlled by j.)

6-8 Rational Action Suppose we have the case where both agents can influence the outcome, and they have utility functions as follows: With a bit of abuse of notation: Then agent i ’s preferences are: “C” is the rational choice for i. (Because i prefers all outcomes that arise through C over all outcomes that arise through D.)

6-9 Payoff Matrices We can characterize the previous scenario in a payoff matrix: Agent i is the column player Agent j is the row player

6-10 Dominant Strategies Given any particular strategy (either C or D) of agent i, there will be a number of possible outcomes We say s 1 dominates s 2 if every outcome possible by i playing s 1 is preferred over every outcome possible by i playing s 2 A rational agent will never play a dominated strategy So in deciding what to do, we can delete dominated strategies Unfortunately, there isn’t always a unique undominated strategy

6-11 Nash Equilibrium In general, we will say that two strategies s 1 and s 2 are in Nash equilibrium if: 1. under the assumption that agent i plays s 1, agent j can do no better than play s 2 ; and 2. under the assumption that agent j plays s 2, agent i can do no better than play s 1. Neither agent has any incentive to deviate from a Nash equilibrium Unfortunately: 1. Not every interaction scenario has a Nash equilibrium 2. Some interaction scenarios have more than one Nash equilibrium

6-12 Competitive and Zero-Sum Interactions Where preferences of agents are diametrically opposed we have strictly competitive scenarios Zero-sum encounters are those where utilities sum to zero: u i (  ) + u j (  ) = 0 for all  0  Zero sum implies strictly competitive Zero sum encounters in real life are very rare … but people tend to act in many scenarios as if they were zero sum

6-13 The Prisoner’s Dilemma Two men are collectively charged with a crime and held in separate cells, with no way of meeting or communicating. They are told that:  if one confesses and the other does not, the confessor will be freed, and the other will be jailed for three years  if both confess, then each will be jailed for two years Both prisoners know that if neither confesses, then they will each be jailed for one year

6-14 The Prisoner’s Dilemma Payoff matrix for prisoner’s dilemma: Top left: If both defect, then both get punishment for mutual defection Top right: If i cooperates and j defects, i gets sucker’s payoff of 1, while j gets 4 Bottom left: If j cooperates and i defects, j gets sucker’s payoff of 1, while i gets 4 Bottom right: Reward for mutual cooperation

6-15 The Prisoner’s Dilemma The individual rational action is defect This guarantees a payoff of no worse than 2, whereas cooperating guarantees a payoff of at most 1 So defection is the best response to all possible strategies: both agents defect, and get payoff = 2 But intuition says this is not the best outcome: Surely they should both cooperate and each get payoff of 3!

6-16 The Prisoner’s Dilemma This apparent paradox is the fundamental problem of multi-agent interactions. It appears to imply that cooperation will not occur in societies of self-interested agents. Real world examples:  nuclear arms reduction (“why don’t I keep mine... ”)  free rider systems — public transport;  in the UK — television licenses. The prisoner’s dilemma is ubiquitous. Can we recover cooperation?

6-17 Arguments for Recovering Cooperation Conclusions that some have drawn from this analysis:  the game theory notion of rational action is wrong!  somehow the dilemma is being formulated wrongly Arguments to recover cooperation:  We are not all Machiavelli!  The other prisoner is my twin!  The shadow of the future…

6-18 The Iterated Prisoner’s Dilemma One answer: play the game more than once If you know you will be meeting your opponent again, then the incentive to defect appears to evaporate Cooperation is the rational choice in the infinititely repeated prisoner’s dilemma (Hurrah!)

6-19 Backwards Induction But…suppose you both know that you will play the game exactly n times On round n - 1, you have an incentive to defect, to gain that extra bit of payoff… But this makes round n – 2 the last “real”, and so you have an incentive to defect there, too. This is the backwards induction problem. Playing the prisoner’s dilemma with a fixed, finite, pre-determined, commonly known number of rounds, defection is the best strategy

6-20 Axelrod’s Tournament Suppose you play iterated prisoner’s dilemma against a range of opponents… What strategy should you choose, so as to maximize your overall payoff? Axelrod (1984) investigated this problem, with a computer tournament for programs playing the prisoner’s dilemma

6-21 Strategies in Axelrod’s Tournament ALLD:  “Always defect” — the hawk strategy; TIT-FOR-TAT: 1. On round u = 0, cooperate 2. On round u > 0, do what your opponent did on round u – 1 TESTER:  On 1st round, defect. If the opponent retaliated, then play TIT-FOR-TAT. Otherwise intersperse cooperation and defection. JOSS:  As TIT-FOR-TAT, except periodically defect

6-22 Recipes for Success in Axelrod’s Tournament Axelrod suggests the following rules for succeeding in his tournament:  Don’t be envious: Don’t play as if it were zero sum!  Be nice: Start by cooperating, and reciprocate cooperation  Retaliate appropriately: Always punish defection immediately, but use “measured” force — don’t overdo it  Don’t hold grudges: Always reciprocate cooperation immediately

6-23 Game of Chicken Consider another type of encounter — the game of chicken: (Think of James Dean in Rebel without a Cause: swerving = coop, driving straight = defect.) Difference to prisoner’s dilemma: Mutual defection is most feared outcome. (Whereas sucker’s payoff is most feared in prisoner’s dilemma.) Strategies (c,d) and (d,c) are in Nash equilibrium

6-24 Other Symmetric 2 x 2 Games Given the 4 possible outcomes of (symmetric) cooperate/defect games, there are 24 possible orderings on outcomes  CC š i CD š i DC š i DD Cooperation dominates  DC š i DD š i CC š i CD Deadlock. You will always do best by defecting  DC š i CC š i DD š i CD Prisoner’s dilemma  DC š i CC š i CD š i DD Chicken  CC š i DC š i DD š i CD Stag hunt