The Theory of Games By Tara Johnson, Lisa Craig and Amanda Parlin.

Slides:



Advertisements
Similar presentations
Mixed Strategies.
Advertisements

Introduction to Game Theory
9.1 Strictly Determined Games Game theory is a relatively new branch of mathematics designed to help people who are in conflict situations determine the.
Module 4 Game Theory To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides created by Jeff Heyl.
Game Theory Assignment For all of these games, P1 chooses between the columns, and P2 chooses between the rows.
Game Theory S-1.
APPENDIX An Alternative View of the Payoff Matrix n Assume total maximum profits of all oligopolists is constant at 200 units. n Alternative policies.
A Beautiful Game John C. Sparks AFRL/WS (937) Wright-Patterson Educational Outreach The Air Force Research Laboratory.
Chapter Twenty-Eight Game Theory. u Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents.
Two-Player Zero-Sum Games
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
1 Chapter 4: Minimax Equilibrium in Zero Sum Game SCIT1003 Chapter 4: Minimax Equilibrium in Zero Sum Game Prof. Tsang.
Chapter 3 Decision Analysis.
An Introduction to... Evolutionary Game Theory
MIT and James Orlin © Game Theory 2-person 0-sum (or constant sum) game theory 2-person game theory (e.g., prisoner’s dilemma)
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Game theory.
Game Theory, Part 1 Game theory applies to more than just games. Corporations use it to influence business decisions, and militaries use it to guide their.
OLIGOPOLY A market structure in which there are few firms, each of which is large relative to the total industry. Key idea: Decision of firms are interdependent.
Game Theory. “If you don’t think the math matters, then you don’t know the right math.” Chris Ferguson 2002 World Series of Poker Champion.
Game Theory. Games Oligopolist Play ▫Each oligopolist realizes both that its profit depends on what its competitor does and that its competitor’s profit.
Part 3: The Minimax Theorem
Games What is ‘Game Theory’? There are several tools and techniques used by applied modelers to generate testable hypotheses Modeling techniques widely.
GAME THEORY By Ben Cutting & Rohit Venkat. Game Theory: General Definition  Mathematical decision making tool  Used to analyze a competitive situation.
Eponine Lupo.  Game Theory is a mathematical theory that deals with models of conflict and cooperation.  It is a precise and logical description of.
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
Chapter Twenty-Eight Game Theory. u Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents.
Game Theory and Applications following H. Varian Chapters 28 & 29.
Artificial Intelligence for Games and Puzzles1 Games in the real world Many real-world situations and problems.
Game Theory Here we study a method for thinking about oligopoly situations. As we consider some terminology, we will see the simultaneous move, one shot.
1 Section 2d Game theory Game theory is a way of thinking about situations where there is interaction between individuals or institutions. The parties.
Games of Chance Introduction to Artificial Intelligence COS302 Michael L. Littman Fall 2001.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 68 Chapter 9 The Theory of Games.
Artificial Intelligence for Games and Puzzles1 Games in the real world Many real-world situations and.
Game Theory.
1 Decision Analysis Here we study the situation where the probability of each state of nature is known.
Game Theory Statistics 802. Lecture Agenda Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for.
Game Theory.
Brian Duddy.  Two players, X and Y, are playing a card game- goal is to find optimal strategy for X  X has red ace (A), black ace (A), and red two (2)
Games of Strategy (Game Theory) Topic 1 – Part IV.
The Design & Analysis of the Algorithms Lecture by me M. Sakalli Download two pdf files..
A Little Game Theory1 A LITTLE GAME THEORY Mike Bailey MSIM 852.
Game theory & Linear Programming Steve Gu Mar 28, 2008.
Game Theory, Part 2 Consider again the game that Sol and Tina were playing, but with a different payoff matrix: H T Tina H T Sol.
Part 3 Linear Programming
1 GAME THEORY AND OLIGOPOLY l Principles of Microeconomic Theory, ECO 284 l John Eastwood l CBA 247 l l address:
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Game Theory Optimal Strategies Formulated in Conflict MGMT E-5070.
Strategic Behavior in Business and Econ Static Games of complete information: Dominant Strategies and Nash Equilibrium in pure and mixed strategies.
Statistics Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for Windows software Modeling.
INDEX Introduction of game theory Introduction of game theory Significance of game theory Significance of game theory Essential features of game theory.
Games of pure conflict two-person constant sum games.
GAME THEORY and its Application Chapter 06. Outlines... Introduction Prisoner`s dilemma Nash equilibrium Oligopoly price fixing Game Collusion for profit.
GAME THEORY Day 5. Minimax and Maximin Step 1. Write down the minimum entry in each row. Which one is the largest? Maximin Step 2. Write down the maximum.
Lec 23 Chapter 28 Game Theory.
9.2 Mixed Strategy Games In this section, we look at non-strictly determined games. For these type of games the payoff matrix has no saddle points.
By: Donté Howell Game Theory in Sports. What is Game Theory? It is a tool used to analyze strategic behavior and trying to maximize his/her payoff of.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Now that we have set of pure strategies for each player, we need to find the payoffs to put the game in strategic form. Random payoffs. The actual outcome.
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Game Theory Just last week:
Tools for Decision Analysis: Analysis of Risky Decisions
Games of pure conflict two person constant sum
Chapter 6 Game Theory (Module 4) 1.
Game Theory.
Game Theory and Strategic Play
Lecture 20 Linear Program Duality
EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF INDUSTRIAL ENGINEERING IENG314 OPERATIONS RESEARCH II SAMIR SAMEER ABUYOUSSEF
Game Theory Lesson 15 Section 65.
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Presentation transcript:

The Theory of Games By Tara Johnson, Lisa Craig and Amanda Parlin

What is Game Theory The discipline got its name with the 1944 book Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern and was worked with heavily in the 1950’s. In the 1970’s it was used in the field of Biology (1)Theory of Games and Economic BehaviorJohn von Neumann Oskar Morgenstern Game Theory is a type of math that has been used in economics, engineering, business and political science just to name a few. (1) Game theory uses math to collect data off of behaviors in strategy driven situations, in which one persons successful choice depends on the choice of another player. (1)

Games and Strategies The Question of Game Theory—How should I move to maximize my gain? Pure Strategy is characterized by 1 play used over and over Mixed strategy is characterized by making random moves based on select probabilities for each move. These games are determined in that we KNOW what the scenarios and payoff’s are before we make our choice. We take into account what my opponent may do, not fully knowing what they will do. Next we are going to show you an example of this theory…

Example of Game Strategy “The Shopping Ladies” Two ladies, Betty and Jo are shopping for cheap goods to sell on EBay for a potential profit There are 2 stores that sell 1 item a day The objective is to get to one of the stores before the other person. If they choose the store first, they are in a positive profit, and if they don’t choose the store first, they will be in a negative profit. Store 1 has a payoff of 5 or -5 if it has previously been picked Store 2 has a payoff of 3 or -3 if it has previously been picked

The Payoff Matrix BETTY S1S2 JS1 5-3 OS2-5 3 If Jo goes to store 1 and Betty also goes to store 1, Jo will be up 5, Betty will be down -5 If Betty goes to store 2 and Jo goes to store 2, Betty will be down -3 and Jo will be up 3 If Jo goes to store 2 and Betty goes to store 1, Jo will be down -5 and Betty will be up 5 If Jo goes to store 1 and Betty goes to store 2, Betty will be up 3 and Jo will be down -3

Pure Strategy The Payoff Matrix Betty 1 st 2 nd J1 st _5 -3 O2 nd -5 3 To Maximize her Payoff using Pure Strategy, Betty would identify the largest payoff in each row. In this case, row 1’s choice would be 5 and row two would be 3. Then choose the best choice. Knowing that Jo will want to maximize her gain—the best choice for Betty might be to pick Row 2 with a payoff of 3 rather than risk going for the 5 and losing 3. (3)

Mixed Strategies Mixed Strategies is opposite from Pure Strategy in that instead of one strategy used over and over, you “mix it up” and use various strategies to obtain a chance at better results The outcomes are not always known or determined You play these games over and over again with many different outcomes

Step oneThe Payoff Matrix [A] Betty 1 st 2 nd J1st 5-3 O2nd-5 3 Step two Jo’s mixed strategy[B]Betty’s mixed strategy [C] [.75.25][.5.5] [.75.25] are represented that Jo will pick Store #1 - 75% of the time and will pick store #2 - 25% of the time. [.5.5] are represented that Betty will pick either store 50% of the time. Step 3 is to multiply Jo’s Matrix probability to the Payoff Matrix and then multiply by Betty’s Matrix this will give you the Expected Value for the two of them. OutcomeWinnerProbability [B] * [A] * [C] = EVRow 1, Col 1 5(.75)(.5) = [.75.25] * [5 -3 ] * [.5 OR Row 1, Col 2-3(.75)(.5) = [-5 3].5] =.5 Row 2, Col 1-5(.25)(.5) =-.625 Row 2, Col 2 3(.25)(.5) =.375 Step 4 to show the EV for the pair by adding the probability column together for total EV Answer: This Expected value for this is based on one play and is valued at 50 cents The Expected Value Of Shopping Using Mixed Strategies

The Payoff Matrix Betty 1 st 2 nd J1 st 5 -3 O2 nd -5 3 For every choice Jo may make, there is a counterstrategy that Betty might make The Optimized Mixed Strategy for Jo is where Her Expected Value against Betty’s Counter strategy is the highest(3) The Optimized Mixed Strategy for Betty is where Her Expected Value against Jo’s counterstrategy is the smallest(3) We would use a linear programming program to define the “optimal” move to make Optimal Mixed Strategy

References 1.Game Theory 2. Linear Programming Applet 3.The Theory of Games Handout Chapter 9