2000 by Prentice-Hall, Inc1 Supplement 2 – Decision Analysis A set of quantitative decision-making techniques for decision situations where uncertainty.

Slides:



Advertisements
Similar presentations
Decision Theory.
Advertisements

To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
1 Decision Analysis What is it? What is the objective? More example Tutorial: 8 th ed:: 5, 18, 26, 37 9 th ed: 3, 12, 17, 24 (to p2) (to p5) (to p50)
12-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Decision Analysis Chapter 12.
Chapter 14 Decision Analysis. Decision Making Many decision making occur under condition of uncertainty Decision situations –Probability cannot be assigned.
Introduction to Management Science
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 5S Decision Theory.
Introduction to Management Science
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Copyright 2009 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 6 th Edition Chapter 1 Supplement Roberta.
1 DSCI 3223 Decision Analysis Decision Making Under Uncertainty –Techniques play an important role in business, government, everyday life, college football.
Chapter 3 Decision Analysis.
Decision Analysis. What is Decision Analysis? The process of arriving at an optimal strategy given: –Multiple decision alternatives –Uncertain future.
Managerial Decision Modeling with Spreadsheets
Operations and Supply Chain Management, 8th Edition
3 Decision Analysis To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by.
Decision Analysis Chapter 12.
Decision Theory is a body of knowledge and related analytical techniques Decision is an action to be taken by the Decision Maker Decision maker is a person,
Part 3 Probabilistic Decision Models
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
DECISION THEORY Decision theory is an analytical and systematic way to tackle problems A good decision is based on logic.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 5 th Edition Chapter 2 Supplement Roberta.
Decision Analysis Chapter 3
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
Chapter 1 Supplement Decision Analysis Supplement 1-1.
Operations Management Decision-Making Tools Module A
Operations Management Decision-Making Tools Module A
Operational Decision-Making Tools: Decision Analysis
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Decision Analysis Chapter 3
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations Management Decision-Making Tools Module A.
Module 5 Part 2: Decision Theory
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations.
Chapter 3 Decision Analysis.
OPIM 204: Lecture #1 Introduction to OM OPIM 204 Operations Management Instructor: Jose M. Cruz Office: Room 332 Phone: (203)
Decision Theory Decision theory problems are characterized by the following: 1.A list of alternatives. 2.A list of possible future states of nature. 3.Payoffs.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Supplement S2 Decision Analysis To.
12-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Decision Analysis Chapter 12.
Operations Research II Course,, September Part 5: Decision Models Operations Research II Dr. Aref Rashad.
Copyright 2006 John Wiley & Sons, Inc. OPIM 3104: Lecture #1 Introduction to OM Instructor: Jose M. Cruz.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
12-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Decision Analysis Chapter 12.
Decision Analysis.
Example We want to determine the best real estate investment project given the following table of payoffs for three possible interest rate scenarios. Interest.
SUPPLEMENT TO CHAPTER TWO Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 1999 DECISION MAKING 2S-1 Chapter 2 Supplement Decision Making.
Decision Making Under Uncertainty: Pay Off Table and Decision Tree.
Chapter 12 Decision Analysis. Components of Decision Making (D.M.) F Decision alternatives - for managers to choose from. F States of nature - that may.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
QUANTITATIVE TECHNIQUES
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 4 Decision Analysis Building the Structure for Solving.
DECISION THEORY & DECISION TREE
Decision Analysis Chapter 12.
OPERATIONS MANAGEMENT: Creating Value Along the Supply Chain,
Chapter 19 Decision Making
Decision Analysis Chapter 12.
Supplement: Decision Making
MNG221- Management Science –
Decision Analysis Support Tools and Processes
Presentation transcript:

2000 by Prentice-Hall, Inc1 Supplement 2 – Decision Analysis A set of quantitative decision-making techniques for decision situations where uncertainty exists

2000 by Prentice-Hall, Inc2 Decision Making States of nature Events that may occur in the future Events that may occur in the future Decision maker is uncertain which state of nature will occur Decision maker is uncertain which state of nature will occur Decision maker has no control over the states of nature Decision maker has no control over the states of nature

2000 by Prentice-Hall, Inc3 Payoff Table A method of organizing & illustrating the payoffs from different decisions given various states of nature A method of organizing & illustrating the payoffs from different decisions given various states of nature A payoff is the outcome of the decision A payoff is the outcome of the decision

2000 by Prentice-Hall, Inc4 Payoff Table States Of Nature Decisionab 1Payoff 1aPayoff 1b 2Payoff 2aPayoff 2b Table S2.1

2000 by Prentice-Hall, Inc5 Decision Making Criteria Under Uncertainty Maximax criterion Choose decision with the maximum of the maximum payoffs Choose decision with the maximum of the maximum payoffs Maximin criterion Choose decision with the maximum of the minimum payoffs Choose decision with the maximum of the minimum payoffs Minimax regret criterion Choose decision with the minimum of the maximum regrets for each alternative Choose decision with the minimum of the maximum regrets for each alternative

2000 by Prentice-Hall, Inc6 Hurwicz criterion Choose decision in which decision payoffs are weighted by a coefficient of optimism,  Choose decision in which decision payoffs are weighted by a coefficient of optimism,  Coefficient of optimism (  ) is a measure of a decision maker’s optimism, from 0 (completely pessimistic) to 1 (completely optimistic) Coefficient of optimism (  ) is a measure of a decision maker’s optimism, from 0 (completely pessimistic) to 1 (completely optimistic) Equal likelihood (La Place) criterion Choose decision in which each state of nature is weighted equally Choose decision in which each state of nature is weighted equally

2000 by Prentice-Hall, Inc7 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1

2000 by Prentice-Hall, Inc8 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1 Maximax Solution Expand:$800,000 Status quo:1,300,000  Maximum Sell: 320,000 Decision: Maintain status quo

2000 by Prentice-Hall, Inc9 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1 Maximin Solution Expand:$500,000  Maximum Status quo:-150,000 Sell: 320,000 Decision: Expand

2000 by Prentice-Hall, Inc10 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1 Minimax Regret Solution $1,300, ,000= 500,000 $500, ,000= 0 1,300, ,300,000= 0500,000 - (-150,000)= 650,000 1,300, ,000= 980,000500, ,000= 180,000 GOOD CONDITIONSPOOR CONDITIONS Expand:$500,000  Minimum Status quo:650,000 Sell: 980,000 Decision: Expand

2000 by Prentice-Hall, Inc11 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1 Hurwicz Criteria  =  = 0.7 Expand: $800,000(0.3) + 500,000(0.7) = $590,000  Maximum Status quo: 1,300,000(0.3) -150,000(0.7) = 285,000 Sell: 320,000(0.3) + 320,000(0.7) = 320,000 Decision: Expand

2000 by Prentice-Hall, Inc12 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.1 Equal Likelihood Criteria Two states of nature each weighted 0.50 Expand: $800,000(0.5) + 500,000(0.5) = $650,000  Maximum Status quo: 1,300,000(0.5) -150,000(0.5) = 575,000 Sell: 320,000(0.5) + 320,000(0.5) = 320,000 Decision: Expand

2000 by Prentice-Hall, Inc13 Real Estate Investing Example STATES OF NATURE GoodFair Poor DECISION EconomicEconomic Economic ConditionsConditions Conditions Apartment $50,000 $25,000$10,000 Office 100,000 30, ,000 Warehouse 30,00015, ,000

2000 by Prentice-Hall, Inc14 Decision Making with Probabilities Risk involves assigning probabilities to states of nature Risk involves assigning probabilities to states of nature Expected value is a weighted average of decision outcomes in which each future state of nature is assigned a probability of occurrence Expected value is a weighted average of decision outcomes in which each future state of nature is assigned a probability of occurrence

2000 by Prentice-Hall, Inc15 Expected Value EV ( x ) = p ( x i ) x i n i =1 where x i = outcome i p ( x i )= probability of outcome i

2000 by Prentice-Hall, Inc16 Southern Textile Company STATES OF NATURE Good ForeignPoor Foreign DECISION Competitive ConditionsCompetitive Conditions Expand$ 800,000$ 500,000 Maintain status quo1,300, ,000 Sell now320,000320,000 Example S2.2 Expected Value p (good) = 0.70 p (poor) = 0.30 EV(expand) $800,000(0.7) + 500,000(0.3) = $710,000 EV(status quo) 1,300,000(0.7) -150,000(0.3) = 865,000  Maximum EV(sell) 320,000(0.7) + 320,000(0.3) = 320,000 Decision: Status quo

2000 by Prentice-Hall, Inc17 Expected Value of Perfect Information The maximum value of perfect information to the decision maker The maximum value of perfect information to the decision maker EVPI = (expected value given perfect information) - (expected value without perfect information) EVPI = (expected value given perfect information) - (expected value without perfect information)

2000 by Prentice-Hall, Inc18 Sequential Decision Trees A graphical method for analyzing decision situations that require a sequence of decisions over time A graphical method for analyzing decision situations that require a sequence of decisions over time Decision tree consists of Decision tree consists of Square nodes - indicating decision points Square nodes - indicating decision points Circles nodes - indicating states of nature Circles nodes - indicating states of nature Arcs - connecting nodes Arcs - connecting nodes

2000 by Prentice-Hall, Inc19 Southern Textile Decision Tree Warehouse(-$600,000) Sell land Marketgrowth 0.70 Marketgrowth Expand(-$800,000) Purchase Land (-$200,000) Expand(-$800,000) No market growth $225,000 Market growth $2,000,000$3,000,000 $700,000 $2,300,000 $1,000,000 $210,000 No market growth growth 0.30 growth (3 years, $0 payoff) Market growth (3 years, $0 payoff) Example S2.3

2000 by Prentice-Hall, Inc20 Evaluations at Nodes Compute EV at nodes 6 & 7 EV(node 6)= 0.80($3,000,000) ($700,000) = $2,540,000 EV(node 7)= 0.30($2,300,000) ($1,000,000) = $1,390,000 Expected values written above nodes 6 & 7 Decision at node 4 is between $2,540,000 for Expand and $450,000 for Sell land Choose Expand Repeat expected value calculations and decisions at remaining nodes

2000 by Prentice-Hall, Inc21 Decision Tree Solution Expand(-$800,000) Purchase Land (-$200,000) Expand(-$800,000) Warehouse(-$600,000) No market growth $225,000 Market growth $2,000,000$3,000,000 $700,000 $2,300,000 $1,000,000 $210,000 Marketgrowth Marketgrowth No market growth growth Sell land No market growth (3 years, $0 payoff) Market growth (3 years, $0 payoff) Example S2.3

2000 by Prentice-Hall, Inc22 Decision Tree Solution Expand(-$800,000) Purchase Land (-$200,000) $1,160,000 $1,360,000 $790,000 $1,390,000 $1,740,000 $2,540,000 Expand(-$800,000) Warehouse(-$600,000) No market growth $225,000 Market growth $2,000,000$3,000,000 $700,000 $2,300,000 $1,000,000 $210,000 Marketgrowth Marketgrowth No market growth growth Sell land No market growth (3 years, $0 payoff) Market growth (3 years, $0 payoff) $1,290, Example S2.3